采用分层深度学习方法的全自动食道分割。

Roger Trullo, Caroline Petitjean, Dong Nie, Dinggang Shen, Su Ruan
{"title":"采用分层深度学习方法的全自动食道分割。","authors":"Roger Trullo,&nbsp;Caroline Petitjean,&nbsp;Dong Nie,&nbsp;Dinggang Shen,&nbsp;Su Ruan","doi":"10.1109/ICSIPA.2017.8120664","DOIUrl":null,"url":null,"abstract":"<p><p>Segmentation of organs at risk in CT volumes is a prerequisite for radiotherapy treatment planning. In this paper we focus on esophagus segmentation, a challenging problem since the walls of the esophagus have a very low contrast in CT images. Making use of Fully Convolutional Networks (FCN), we present several extensions that improve the performance, including a new architecture that allows to use low level features with high level information, effectively combining local and global information for improving the localization accuracy. Experiments demonstrate competitive performance on a dataset of 30 CT scans.</p>","PeriodicalId":92495,"journal":{"name":"Conference proceedings. IEEE International Conference on Signal and Image Processing Applications","volume":"2017 ","pages":"503-506"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICSIPA.2017.8120664","citationCount":"18","resultStr":"{\"title\":\"Fully automated esophagus segmentation with a hierarchical deep learning approach.\",\"authors\":\"Roger Trullo,&nbsp;Caroline Petitjean,&nbsp;Dong Nie,&nbsp;Dinggang Shen,&nbsp;Su Ruan\",\"doi\":\"10.1109/ICSIPA.2017.8120664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Segmentation of organs at risk in CT volumes is a prerequisite for radiotherapy treatment planning. In this paper we focus on esophagus segmentation, a challenging problem since the walls of the esophagus have a very low contrast in CT images. Making use of Fully Convolutional Networks (FCN), we present several extensions that improve the performance, including a new architecture that allows to use low level features with high level information, effectively combining local and global information for improving the localization accuracy. Experiments demonstrate competitive performance on a dataset of 30 CT scans.</p>\",\"PeriodicalId\":92495,\"journal\":{\"name\":\"Conference proceedings. IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"2017 \",\"pages\":\"503-506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICSIPA.2017.8120664\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings. IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

CT体积中危险器官的分割是放射治疗计划的先决条件。在本文中,我们关注食道分割,这是一个具有挑战性的问题,因为食道壁在CT图像中的对比度非常低。利用全卷积网络(FCN),我们提出了几个改进性能的扩展,包括一种新的架构,允许使用低级别特征和高级别信息,有效地结合本地和全局信息以提高定位精度。实验证明了在30个CT扫描数据集上的竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fully automated esophagus segmentation with a hierarchical deep learning approach.

Fully automated esophagus segmentation with a hierarchical deep learning approach.

Fully automated esophagus segmentation with a hierarchical deep learning approach.

Fully automated esophagus segmentation with a hierarchical deep learning approach.

Segmentation of organs at risk in CT volumes is a prerequisite for radiotherapy treatment planning. In this paper we focus on esophagus segmentation, a challenging problem since the walls of the esophagus have a very low contrast in CT images. Making use of Fully Convolutional Networks (FCN), we present several extensions that improve the performance, including a new architecture that allows to use low level features with high level information, effectively combining local and global information for improving the localization accuracy. Experiments demonstrate competitive performance on a dataset of 30 CT scans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信