使用多模态深度学习的在线过程阶段检测。

Xinyu Li, Yanyi Zhang, Mengzhu Li, Shuhong Chen, Farneth R Austin, Ivan Marsic, Randall S Burd
{"title":"使用多模态深度学习的在线过程阶段检测。","authors":"Xinyu Li,&nbsp;Yanyi Zhang,&nbsp;Mengzhu Li,&nbsp;Shuhong Chen,&nbsp;Farneth R Austin,&nbsp;Ivan Marsic,&nbsp;Randall S Burd","doi":"10.1109/UEMCON.2016.7777912","DOIUrl":null,"url":null,"abstract":"<p><p>We present a multimodal deep-learning structure that automatically predicts phases of the trauma resuscitation process in real-time. The system first pre-processes the audio and video streams captured by a Kinect's built-in microphone array and depth sensor. A multimodal deep learning structure then extracts video and audio features, which are later combined through a \"slow fusion\" model. The final decision is then made from the combined features through a modified softmax classification layer. The model was trained on 20 trauma resuscitation cases (>13 hours), and was tested on 5 other cases. Our results showed over 80% online detection accuracy with 0.7 F-Score, outperforming previous systems.</p>","PeriodicalId":92155,"journal":{"name":"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/UEMCON.2016.7777912","citationCount":"18","resultStr":"{\"title\":\"Online Process Phase Detection Using Multimodal Deep Learning.\",\"authors\":\"Xinyu Li,&nbsp;Yanyi Zhang,&nbsp;Mengzhu Li,&nbsp;Shuhong Chen,&nbsp;Farneth R Austin,&nbsp;Ivan Marsic,&nbsp;Randall S Burd\",\"doi\":\"10.1109/UEMCON.2016.7777912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a multimodal deep-learning structure that automatically predicts phases of the trauma resuscitation process in real-time. The system first pre-processes the audio and video streams captured by a Kinect's built-in microphone array and depth sensor. A multimodal deep learning structure then extracts video and audio features, which are later combined through a \\\"slow fusion\\\" model. The final decision is then made from the combined features through a modified softmax classification layer. The model was trained on 20 trauma resuscitation cases (>13 hours), and was tested on 5 other cases. Our results showed over 80% online detection accuracy with 0.7 F-Score, outperforming previous systems.</p>\",\"PeriodicalId\":92155,\"journal\":{\"name\":\"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual\",\"volume\":\"2016 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/UEMCON.2016.7777912\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON.2016.7777912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE Annual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON.2016.7777912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们提出了一种多模态深度学习结构,可以实时自动预测创伤复苏过程的各个阶段。该系统首先对Kinect内置麦克风阵列和深度传感器捕获的音频和视频流进行预处理。然后,多模态深度学习结构提取视频和音频特征,然后通过“慢融合”模型将其组合在一起。然后通过改进的softmax分类层从组合的特征中做出最终决定。该模型对20例>13小时的创伤复苏病例进行了训练,并对另外5例进行了测试。我们的结果显示,在线检测准确率超过80%,F-Score为0.7,优于以前的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Online Process Phase Detection Using Multimodal Deep Learning.

Online Process Phase Detection Using Multimodal Deep Learning.

Online Process Phase Detection Using Multimodal Deep Learning.

Online Process Phase Detection Using Multimodal Deep Learning.

We present a multimodal deep-learning structure that automatically predicts phases of the trauma resuscitation process in real-time. The system first pre-processes the audio and video streams captured by a Kinect's built-in microphone array and depth sensor. A multimodal deep learning structure then extracts video and audio features, which are later combined through a "slow fusion" model. The final decision is then made from the combined features through a modified softmax classification layer. The model was trained on 20 trauma resuscitation cases (>13 hours), and was tested on 5 other cases. Our results showed over 80% online detection accuracy with 0.7 F-Score, outperforming previous systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信