Styliani Avraamidou, Aaron Milhorn, Owais Sarwar, Efstratios N Pistikopoulos
{"title":"迈向量化的食物-能源-水关联度量,以促进过程系统中的决策:一个乳制品生产厂的案例研究。","authors":"Styliani Avraamidou, Aaron Milhorn, Owais Sarwar, Efstratios N Pistikopoulos","doi":"10.1016/B978-0-444-64235-6.50071-1","DOIUrl":null,"url":null,"abstract":"<p><p>While the importance of the Food-Energy-Water Nexus (FEW-N) has been widely accepted, a holistic approach to facilitate decision making in FEW-N systems, along with a quantitative index assessing the integrated FEW-N performance is rather lacking. In this work, we propose a FEW-N metric along with a framework to facilitate decision making for FEW-N process systems through a FEW-N integrated approach. The framework and metric are illustrated through a case study on a dairy production and processing plant. The dairy industry is a significant user of water and energy, with water being a top issue for most dairy industries and organizations worldwide. Following the framework, we develop a mixed-integer scheduling model, with alternative pathways, that faithfully replicated the major food, energy, and water aspects of a real cottage-cheese production plant. Using the developed FEW-N metric we were able to optimize the cottage-cheese plant process and observe different trade-offs between the FEW-N elements.</p>","PeriodicalId":72950,"journal":{"name":"ESCAPE. European Symposium on Computer Aided Process Engineering","volume":"43 ","pages":"391-396"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/B978-0-444-64235-6.50071-1","citationCount":"14","resultStr":"{\"title\":\"Towards a Quantitative Food-Energy-Water Nexus Metric to Facilitate Decision Making in Process Systems: A Case Study on a Dairy Production Plant.\",\"authors\":\"Styliani Avraamidou, Aaron Milhorn, Owais Sarwar, Efstratios N Pistikopoulos\",\"doi\":\"10.1016/B978-0-444-64235-6.50071-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While the importance of the Food-Energy-Water Nexus (FEW-N) has been widely accepted, a holistic approach to facilitate decision making in FEW-N systems, along with a quantitative index assessing the integrated FEW-N performance is rather lacking. In this work, we propose a FEW-N metric along with a framework to facilitate decision making for FEW-N process systems through a FEW-N integrated approach. The framework and metric are illustrated through a case study on a dairy production and processing plant. The dairy industry is a significant user of water and energy, with water being a top issue for most dairy industries and organizations worldwide. Following the framework, we develop a mixed-integer scheduling model, with alternative pathways, that faithfully replicated the major food, energy, and water aspects of a real cottage-cheese production plant. Using the developed FEW-N metric we were able to optimize the cottage-cheese plant process and observe different trade-offs between the FEW-N elements.</p>\",\"PeriodicalId\":72950,\"journal\":{\"name\":\"ESCAPE. European Symposium on Computer Aided Process Engineering\",\"volume\":\"43 \",\"pages\":\"391-396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/B978-0-444-64235-6.50071-1\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESCAPE. European Symposium on Computer Aided Process Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/B978-0-444-64235-6.50071-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESCAPE. European Symposium on Computer Aided Process Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-444-64235-6.50071-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a Quantitative Food-Energy-Water Nexus Metric to Facilitate Decision Making in Process Systems: A Case Study on a Dairy Production Plant.
While the importance of the Food-Energy-Water Nexus (FEW-N) has been widely accepted, a holistic approach to facilitate decision making in FEW-N systems, along with a quantitative index assessing the integrated FEW-N performance is rather lacking. In this work, we propose a FEW-N metric along with a framework to facilitate decision making for FEW-N process systems through a FEW-N integrated approach. The framework and metric are illustrated through a case study on a dairy production and processing plant. The dairy industry is a significant user of water and energy, with water being a top issue for most dairy industries and organizations worldwide. Following the framework, we develop a mixed-integer scheduling model, with alternative pathways, that faithfully replicated the major food, energy, and water aspects of a real cottage-cheese production plant. Using the developed FEW-N metric we were able to optimize the cottage-cheese plant process and observe different trade-offs between the FEW-N elements.