I P Solyanikova, N E Suzina, E V Emelyanova, V N Polivtseva, A B Pshenichnikova, A G Lobanok, L A Golovleva
{"title":"[胁迫条件下苯甲酸酯降解菌株不透明红球菌1CP的形态、生理和生化特性]。","authors":"I P Solyanikova, N E Suzina, E V Emelyanova, V N Polivtseva, A B Pshenichnikova, A G Lobanok, L A Golovleva","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Ability of actinobacteria Rhodococcus opacus 1CP to survive under unfavorable conditions and retain its biodegradation activity was assessed. The morphological and ultrastructural features of R. opacus 1CP cells degrading benzoate in the presence of oxidants and stress-protecting agents were investigated. The cells of R. opacus 1CP were resistant to oxidative stress caused by up to 100 mM H2O2 or up to 25 μM juglone (5-oxy-1,4-naphthoquinone). After 2 h of stress impact, changes in the fatty acid composition, increased activity of antioxidant enzymes, and changes in cell morphology and ultrastructure were observed. The strain retained its ability to degrade benzoate. Quercetin had a protective effect on benzoate-degrading cells of R. opacus 1CP. The strategy for cells survival under unfavorable conditions was formulated, which included\ndecreased cell size/volume and formation of densely-packed cell conglomerates, in which the cells are embedded into a common matrix. Formation of conglomerates may probably be considered as a means for protecting the cells against aggressive environmental factors. The multicellular conglomerate structure and the matrix material impede the penetration of toxic substances into the conglomerates, promoting survival of the cells located inside.</p>","PeriodicalId":18732,"journal":{"name":"Mikrobiologiia","volume":"86 2","pages":"188-200"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Morphological, Physiological, and Biochemical Characteristics of a Benzoate-Degrading Strain Rhodococcus opacus 1CP under Stress Conditions].\",\"authors\":\"I P Solyanikova, N E Suzina, E V Emelyanova, V N Polivtseva, A B Pshenichnikova, A G Lobanok, L A Golovleva\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ability of actinobacteria Rhodococcus opacus 1CP to survive under unfavorable conditions and retain its biodegradation activity was assessed. The morphological and ultrastructural features of R. opacus 1CP cells degrading benzoate in the presence of oxidants and stress-protecting agents were investigated. The cells of R. opacus 1CP were resistant to oxidative stress caused by up to 100 mM H2O2 or up to 25 μM juglone (5-oxy-1,4-naphthoquinone). After 2 h of stress impact, changes in the fatty acid composition, increased activity of antioxidant enzymes, and changes in cell morphology and ultrastructure were observed. The strain retained its ability to degrade benzoate. Quercetin had a protective effect on benzoate-degrading cells of R. opacus 1CP. The strategy for cells survival under unfavorable conditions was formulated, which included\\ndecreased cell size/volume and formation of densely-packed cell conglomerates, in which the cells are embedded into a common matrix. Formation of conglomerates may probably be considered as a means for protecting the cells against aggressive environmental factors. The multicellular conglomerate structure and the matrix material impede the penetration of toxic substances into the conglomerates, promoting survival of the cells located inside.</p>\",\"PeriodicalId\":18732,\"journal\":{\"name\":\"Mikrobiologiia\",\"volume\":\"86 2\",\"pages\":\"188-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mikrobiologiia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
评估了放线菌不透明红球菌1CP在不利条件下存活并保持其生物降解活性的能力。研究了在氧化剂和应激保护剂作用下,不透明鼠1CP细胞降解苯甲酯的形态和超微结构特征。ropacus 1CP细胞对高达100 mM H2O2和高达25 μM核桃酮(5-氧-1,4-萘醌)引起的氧化应激具有抗性。应激2 h后,细胞脂肪酸组成发生变化,抗氧化酶活性升高,细胞形态和超微结构发生变化。该菌株保留了降解苯甲酸盐的能力。槲皮素对黑斑田中苯甲酸酯降解细胞有保护作用。制定了在不利条件下细胞存活的策略,包括减少细胞大小/体积和形成密集堆积的细胞聚集体,其中细胞被嵌入到一个共同的基质中。聚集体的形成可能被认为是保护细胞免受侵略性环境因素影响的一种手段。多细胞砾岩结构和基质材料阻碍了有毒物质渗透到砾岩中,促进了内部细胞的存活。
[Morphological, Physiological, and Biochemical Characteristics of a Benzoate-Degrading Strain Rhodococcus opacus 1CP under Stress Conditions].
Ability of actinobacteria Rhodococcus opacus 1CP to survive under unfavorable conditions and retain its biodegradation activity was assessed. The morphological and ultrastructural features of R. opacus 1CP cells degrading benzoate in the presence of oxidants and stress-protecting agents were investigated. The cells of R. opacus 1CP were resistant to oxidative stress caused by up to 100 mM H2O2 or up to 25 μM juglone (5-oxy-1,4-naphthoquinone). After 2 h of stress impact, changes in the fatty acid composition, increased activity of antioxidant enzymes, and changes in cell morphology and ultrastructure were observed. The strain retained its ability to degrade benzoate. Quercetin had a protective effect on benzoate-degrading cells of R. opacus 1CP. The strategy for cells survival under unfavorable conditions was formulated, which included
decreased cell size/volume and formation of densely-packed cell conglomerates, in which the cells are embedded into a common matrix. Formation of conglomerates may probably be considered as a means for protecting the cells against aggressive environmental factors. The multicellular conglomerate structure and the matrix material impede the penetration of toxic substances into the conglomerates, promoting survival of the cells located inside.