头发的力学各向异性——它告诉我们什么?

IF 0.2 4区 医学 Q4 CHEMISTRY, APPLIED
Journal of cosmetic science Pub Date : 2018-09-01
Steven Breakspear, Bernd Noecker, Crisan Popescu
{"title":"头发的力学各向异性——它告诉我们什么?","authors":"Steven Breakspear,&nbsp;Bernd Noecker,&nbsp;Crisan Popescu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Hair fibers were examined by atomic force microscopy, nanoindentation. By indenting along (longitudinal) and across (transversal) the fiber, we evaluated the Young's modulus and its dependence on the moisture content (relative humidity) of the environment. The ratio of the two values collected for Young's modulus, at a given relative humidity, is defined as the anisotropy index (<i>IA</i>) of the fiber and the acquired results give the evolution of the index of anisotropy with the relative humidity. The use of the model of composite materials allowed us to relate the anisotropy index to the fiber internal architecture. The evaluation of the results acquired on the components of the fiber, within the frame of this model, ultimately points to a possible micro-structure of exocuticle, hindered under usual circumstances by its heavy cross-linking and only noticeable when the absorbed moisture swells the surrounding network and annuls, in this way, its effect.</p>","PeriodicalId":15523,"journal":{"name":"Journal of cosmetic science","volume":"69 5","pages":"305-314"},"PeriodicalIF":0.2000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hair Mechanical Anisotropy-What Does It Tell Us?\",\"authors\":\"Steven Breakspear,&nbsp;Bernd Noecker,&nbsp;Crisan Popescu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hair fibers were examined by atomic force microscopy, nanoindentation. By indenting along (longitudinal) and across (transversal) the fiber, we evaluated the Young's modulus and its dependence on the moisture content (relative humidity) of the environment. The ratio of the two values collected for Young's modulus, at a given relative humidity, is defined as the anisotropy index (<i>IA</i>) of the fiber and the acquired results give the evolution of the index of anisotropy with the relative humidity. The use of the model of composite materials allowed us to relate the anisotropy index to the fiber internal architecture. The evaluation of the results acquired on the components of the fiber, within the frame of this model, ultimately points to a possible micro-structure of exocuticle, hindered under usual circumstances by its heavy cross-linking and only noticeable when the absorbed moisture swells the surrounding network and annuls, in this way, its effect.</p>\",\"PeriodicalId\":15523,\"journal\":{\"name\":\"Journal of cosmetic science\",\"volume\":\"69 5\",\"pages\":\"305-314\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cosmetic science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cosmetic science","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

用原子力显微镜、纳米压痕法对毛发纤维进行了检测。通过沿(纵向)和跨(横向)纤维的压痕,我们评估了杨氏模量及其对环境含水量(相对湿度)的依赖。在给定的相对湿度下,收集到的两个杨氏模量值之比被定义为纤维的各向异性指数(IA),所获得的结果给出了各向异性指数随相对湿度的演变。复合材料模型的使用使我们能够将各向异性指数与纤维内部结构联系起来。在该模型的框架内,对纤维成分所获得的结果进行评估,最终指出了一种可能的外表皮微观结构,在通常情况下,由于其严重的交联而受到阻碍,只有当吸收的水分膨胀周围的网络并以这种方式取消其影响时,才会引起注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hair Mechanical Anisotropy-What Does It Tell Us?

Hair fibers were examined by atomic force microscopy, nanoindentation. By indenting along (longitudinal) and across (transversal) the fiber, we evaluated the Young's modulus and its dependence on the moisture content (relative humidity) of the environment. The ratio of the two values collected for Young's modulus, at a given relative humidity, is defined as the anisotropy index (IA) of the fiber and the acquired results give the evolution of the index of anisotropy with the relative humidity. The use of the model of composite materials allowed us to relate the anisotropy index to the fiber internal architecture. The evaluation of the results acquired on the components of the fiber, within the frame of this model, ultimately points to a possible micro-structure of exocuticle, hindered under usual circumstances by its heavy cross-linking and only noticeable when the absorbed moisture swells the surrounding network and annuls, in this way, its effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of cosmetic science
Journal of cosmetic science 工程技术-皮肤病学
CiteScore
0.90
自引率
0.00%
发文量
26
期刊介绍: The JOURNAL OF COSMETIC SCIENCE (JCS) publishes papers concerned with cosmetics, cosmetic products, fragrances, their formulation and their effects in skin care or in overall consumer well-being, as well as papers relating to the sciences underlying cosmetics, such as human skin physiology, color physics, physical chemistry of colloids and emulsions, or psychological effects of olfaction in humans. Papers of interest to the cosmetic industry and to the understanding of the cosmetic markets are also welcome for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信