基于核酸酶s1的人工限制性DNA切割器切割的基因组片段的亲和分离

Q4 Chemistry
Arivazhagan Rajendran, Narumi Shigi, Jun Sumaoka, Makoto Komiyama
{"title":"基于核酸酶s1的人工限制性DNA切割器切割的基因组片段的亲和分离","authors":"Arivazhagan Rajendran,&nbsp;Narumi Shigi,&nbsp;Jun Sumaoka,&nbsp;Makoto Komiyama","doi":"10.1002/cpnc.76","DOIUrl":null,"url":null,"abstract":"<p>The human genome is highly susceptible to various modifications, lesions, and damage. To analyze lesions and proteins bound to a defined region of the human genome, the genome should be fragmented at desired sites and the region of interest should be isolated. The few available methods for isolating a desired region of the human genome have serious drawbacks and can only be applied to specific sequences or require tedious experimental procedures. We have recently developed a novel method to isolate a desired fragment of the genome released by site-specific scission of DNA using a pair of pseudo-complementary peptide nucleic acids (pcPNAs) and S1 nuclease. When conjugated to biotin, one of the pcPNAs can be used to affinity purify the cleavage product. Here we report a detailed protocol to isolate defined kilobase-length DNA fragments that can be applied to plasmid or genomic DNA and is not limited by sequence. © 2019 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10966,"journal":{"name":"Current Protocols in Nucleic Acid Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpnc.76","citationCount":"2","resultStr":"{\"title\":\"Affinity Isolation of Defined Genomic Fragments Cleaved by Nuclease S1-based Artificial Restriction DNA Cutter\",\"authors\":\"Arivazhagan Rajendran,&nbsp;Narumi Shigi,&nbsp;Jun Sumaoka,&nbsp;Makoto Komiyama\",\"doi\":\"10.1002/cpnc.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The human genome is highly susceptible to various modifications, lesions, and damage. To analyze lesions and proteins bound to a defined region of the human genome, the genome should be fragmented at desired sites and the region of interest should be isolated. The few available methods for isolating a desired region of the human genome have serious drawbacks and can only be applied to specific sequences or require tedious experimental procedures. We have recently developed a novel method to isolate a desired fragment of the genome released by site-specific scission of DNA using a pair of pseudo-complementary peptide nucleic acids (pcPNAs) and S1 nuclease. When conjugated to biotin, one of the pcPNAs can be used to affinity purify the cleavage product. Here we report a detailed protocol to isolate defined kilobase-length DNA fragments that can be applied to plasmid or genomic DNA and is not limited by sequence. © 2019 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10966,\"journal\":{\"name\":\"Current Protocols in Nucleic Acid Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpnc.76\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Nucleic Acid Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpnc.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Nucleic Acid Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpnc.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2

摘要

人类基因组极易受到各种修饰、病变和损伤的影响。为了分析病变和与人类基因组特定区域结合的蛋白质,基因组应该在所需的位点上片段化,并且应该分离感兴趣的区域。现有的几种分离人类基因组所需区域的方法都有严重的缺陷,只能应用于特定的序列,或者需要繁琐的实验程序。我们最近开发了一种新方法,利用一对伪互补肽核酸(pcPNAs)和S1核酸酶分离位点特异性DNA切割释放的所需基因组片段。当与生物素结合时,其中一个pcpna可用于亲和纯化裂解产物。在这里,我们报告了一个详细的方案来分离定义的千碱基长度的DNA片段,可以应用于质粒或基因组DNA,不受序列限制。©2019 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affinity Isolation of Defined Genomic Fragments Cleaved by Nuclease S1-based Artificial Restriction DNA Cutter

The human genome is highly susceptible to various modifications, lesions, and damage. To analyze lesions and proteins bound to a defined region of the human genome, the genome should be fragmented at desired sites and the region of interest should be isolated. The few available methods for isolating a desired region of the human genome have serious drawbacks and can only be applied to specific sequences or require tedious experimental procedures. We have recently developed a novel method to isolate a desired fragment of the genome released by site-specific scission of DNA using a pair of pseudo-complementary peptide nucleic acids (pcPNAs) and S1 nuclease. When conjugated to biotin, one of the pcPNAs can be used to affinity purify the cleavage product. Here we report a detailed protocol to isolate defined kilobase-length DNA fragments that can be applied to plasmid or genomic DNA and is not limited by sequence. © 2019 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Nucleic Acid Chemistry
Current Protocols in Nucleic Acid Chemistry Chemistry-Organic Chemistry
自引率
0.00%
发文量
0
期刊介绍: Published in association with International Society for Nucleosides, Nucleotides & Nucleic Acids (IS3NA) , Current Protocols in Nucleic Acid Chemistry is equally valuable for biotech, pharmaceutical, and academic labs. It is the resource for designing and running successful research projects in the rapidly growing and changing field of nucleic acid, nucleotide, and nucleoside research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信