M Kristen Hall, Douglas A Weidner, Sahil Dayal, Elena Pak, Alexander K Murashov, Ruth A Schwalbe
{"title":"用杂化型n -聚糖替代复合型n -聚糖修饰神经元电压门控K+通道的膜分布和活性。","authors":"M Kristen Hall, Douglas A Weidner, Sahil Dayal, Elena Pak, Alexander K Murashov, Ruth A Schwalbe","doi":"10.4172/2168-958X.1000128","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal modifications in N-glycosylation processing are commonly associated with neurological disorders, although the impact of specific N-glycans on neuronal excitability is unknown. By replacement of complex types of N-glycans with hybrid types in neuroblastoma cells, we provide the first study that addresses how distinct N-glycan types impact neuronal excitability. Using CRISPR/Cas9 technology, NB_1, a clonal cell line derived from rat neuroblastoma cells (NB), was modified to create an N-glycosylation mutant cell line, NB_1 (-Mgat2), which expresses predominantly hybrid type N-glycans. Western and lectin blotting, flow cytometry, TIRF and DIC microscopy, and patch clamp studies were conducted. Lectin binding revealed the predominant type of N-glycans expressed in NB_1 (-Mgat2) is hybrid while those of NB and NB_1 are complex. Kv3.1 b-expressing cells with complex N-glycans localized more glycosylated Kv3.1b to the neurites than cells with hybrid N-glycans. Further the absence of N-glycan attachment to Kv3.1b was critical for sub-plasma distribution of Kv3.1b to neurites in primary adult mammalian neurons, along with NB cells. Replacement of complex type N-glycans with hybrid type hindered the opening and closing rates of outward ionic currents of Kv3.1 b-expressing NB cells. The lacks of N-glycan attachment hindered the rates even more but were not significantly different between the NB cell lines. Taken together, our evidence supports N-glycosylation impacts the sub-plasma membrane localization and activity of Kv3.1 b-containing channels. We propose that N-glycosylation processing of Kv3.1 b-containing channels contributes to neuronal excitability, and abnormal modifications in N-glycosylation processing of Kv3.1b could contribute to neurological diseases.</p>","PeriodicalId":92404,"journal":{"name":"Journal of glycobiology","volume":"6 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2168-958X.1000128","citationCount":"7","resultStr":"{\"title\":\"Membrane Distribution and Activity of a Neuronal Voltage-Gated K+ Channel is Modified by Replacement of Complex Type N-Glycans with Hybrid Type.\",\"authors\":\"M Kristen Hall, Douglas A Weidner, Sahil Dayal, Elena Pak, Alexander K Murashov, Ruth A Schwalbe\",\"doi\":\"10.4172/2168-958X.1000128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abnormal modifications in N-glycosylation processing are commonly associated with neurological disorders, although the impact of specific N-glycans on neuronal excitability is unknown. By replacement of complex types of N-glycans with hybrid types in neuroblastoma cells, we provide the first study that addresses how distinct N-glycan types impact neuronal excitability. Using CRISPR/Cas9 technology, NB_1, a clonal cell line derived from rat neuroblastoma cells (NB), was modified to create an N-glycosylation mutant cell line, NB_1 (-Mgat2), which expresses predominantly hybrid type N-glycans. Western and lectin blotting, flow cytometry, TIRF and DIC microscopy, and patch clamp studies were conducted. Lectin binding revealed the predominant type of N-glycans expressed in NB_1 (-Mgat2) is hybrid while those of NB and NB_1 are complex. Kv3.1 b-expressing cells with complex N-glycans localized more glycosylated Kv3.1b to the neurites than cells with hybrid N-glycans. Further the absence of N-glycan attachment to Kv3.1b was critical for sub-plasma distribution of Kv3.1b to neurites in primary adult mammalian neurons, along with NB cells. Replacement of complex type N-glycans with hybrid type hindered the opening and closing rates of outward ionic currents of Kv3.1 b-expressing NB cells. The lacks of N-glycan attachment hindered the rates even more but were not significantly different between the NB cell lines. Taken together, our evidence supports N-glycosylation impacts the sub-plasma membrane localization and activity of Kv3.1 b-containing channels. We propose that N-glycosylation processing of Kv3.1 b-containing channels contributes to neuronal excitability, and abnormal modifications in N-glycosylation processing of Kv3.1b could contribute to neurological diseases.</p>\",\"PeriodicalId\":92404,\"journal\":{\"name\":\"Journal of glycobiology\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2168-958X.1000128\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of glycobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-958X.1000128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of glycobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-958X.1000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Membrane Distribution and Activity of a Neuronal Voltage-Gated K+ Channel is Modified by Replacement of Complex Type N-Glycans with Hybrid Type.
Abnormal modifications in N-glycosylation processing are commonly associated with neurological disorders, although the impact of specific N-glycans on neuronal excitability is unknown. By replacement of complex types of N-glycans with hybrid types in neuroblastoma cells, we provide the first study that addresses how distinct N-glycan types impact neuronal excitability. Using CRISPR/Cas9 technology, NB_1, a clonal cell line derived from rat neuroblastoma cells (NB), was modified to create an N-glycosylation mutant cell line, NB_1 (-Mgat2), which expresses predominantly hybrid type N-glycans. Western and lectin blotting, flow cytometry, TIRF and DIC microscopy, and patch clamp studies were conducted. Lectin binding revealed the predominant type of N-glycans expressed in NB_1 (-Mgat2) is hybrid while those of NB and NB_1 are complex. Kv3.1 b-expressing cells with complex N-glycans localized more glycosylated Kv3.1b to the neurites than cells with hybrid N-glycans. Further the absence of N-glycan attachment to Kv3.1b was critical for sub-plasma distribution of Kv3.1b to neurites in primary adult mammalian neurons, along with NB cells. Replacement of complex type N-glycans with hybrid type hindered the opening and closing rates of outward ionic currents of Kv3.1 b-expressing NB cells. The lacks of N-glycan attachment hindered the rates even more but were not significantly different between the NB cell lines. Taken together, our evidence supports N-glycosylation impacts the sub-plasma membrane localization and activity of Kv3.1 b-containing channels. We propose that N-glycosylation processing of Kv3.1 b-containing channels contributes to neuronal excitability, and abnormal modifications in N-glycosylation processing of Kv3.1b could contribute to neurological diseases.