智能围手术期系统:面向手术风险评估的实时大数据分析。

Zheng Feng, Rajendra Rana Bhat, Xiaoyong Yuan, Daniel Freeman, Tezcan Baslanti, Azra Bihorac, Xiaolin Li
{"title":"智能围手术期系统:面向手术风险评估的实时大数据分析。","authors":"Zheng Feng,&nbsp;Rajendra Rana Bhat,&nbsp;Xiaoyong Yuan,&nbsp;Daniel Freeman,&nbsp;Tezcan Baslanti,&nbsp;Azra Bihorac,&nbsp;Xiaolin Li","doi":"10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201","DOIUrl":null,"url":null,"abstract":"<p><p>Surgery risk assessment is an effective tool for physicians to manage the treatment of patients, but most current research projects fall short in providing a comprehensive platform to evaluate the patients' surgery risk in terms of different complications. The recent evolution of big data analysis techniques makes it possible to develop a real-time platform to dynamically analyze the surgery risk from large-scale patients information. In this paper, we propose the Intelligent Perioperative System (IPS), a real-time system that assesses the risk of postoperative complications (PC) and dynamically interacts with physicians to improve the predictive results. In order to process large volume patients data in real-time, we design the system by integrating several big data computing and storage frameworks with the high through-output streaming data processing components. We also implement a system prototype along with the visualization results to show the feasibility of system design.</p>","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"2017 ","pages":"1254-1259"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201","citationCount":"19","resultStr":"{\"title\":\"Intelligent Perioperative System: Towards Real-time Big Data Analytics in Surgery Risk Assessment.\",\"authors\":\"Zheng Feng,&nbsp;Rajendra Rana Bhat,&nbsp;Xiaoyong Yuan,&nbsp;Daniel Freeman,&nbsp;Tezcan Baslanti,&nbsp;Azra Bihorac,&nbsp;Xiaolin Li\",\"doi\":\"10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgery risk assessment is an effective tool for physicians to manage the treatment of patients, but most current research projects fall short in providing a comprehensive platform to evaluate the patients' surgery risk in terms of different complications. The recent evolution of big data analysis techniques makes it possible to develop a real-time platform to dynamically analyze the surgery risk from large-scale patients information. In this paper, we propose the Intelligent Perioperative System (IPS), a real-time system that assesses the risk of postoperative complications (PC) and dynamically interacts with physicians to improve the predictive results. In order to process large volume patients data in real-time, we design the system by integrating several big data computing and storage frameworks with the high through-output streaming data processing components. We also implement a system prototype along with the visualization results to show the feasibility of system design.</p>\",\"PeriodicalId\":92346,\"journal\":{\"name\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"volume\":\"2017 \",\"pages\":\"1254-1259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

手术风险评估是医生管理患者治疗的有效工具,但目前的研究项目大多缺乏从不同并发症角度对患者手术风险进行综合评估的平台。近年来大数据分析技术的发展使得开发一个实时平台从大量患者信息中动态分析手术风险成为可能。在本文中,我们提出了智能围手术期系统(IPS),这是一个实时系统,可以评估术后并发症(PC)的风险,并与医生动态互动,以提高预测结果。为了实时处理大量患者数据,我们将多个大数据计算和存储框架与高通量流数据处理组件集成在一起设计了系统。我们还实现了一个系统原型,并给出了可视化结果,以证明系统设计的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intelligent Perioperative System: Towards Real-time Big Data Analytics in Surgery Risk Assessment.

Intelligent Perioperative System: Towards Real-time Big Data Analytics in Surgery Risk Assessment.

Intelligent Perioperative System: Towards Real-time Big Data Analytics in Surgery Risk Assessment.

Intelligent Perioperative System: Towards Real-time Big Data Analytics in Surgery Risk Assessment.

Surgery risk assessment is an effective tool for physicians to manage the treatment of patients, but most current research projects fall short in providing a comprehensive platform to evaluate the patients' surgery risk in terms of different complications. The recent evolution of big data analysis techniques makes it possible to develop a real-time platform to dynamically analyze the surgery risk from large-scale patients information. In this paper, we propose the Intelligent Perioperative System (IPS), a real-time system that assesses the risk of postoperative complications (PC) and dynamically interacts with physicians to improve the predictive results. In order to process large volume patients data in real-time, we design the system by integrating several big data computing and storage frameworks with the high through-output streaming data processing components. We also implement a system prototype along with the visualization results to show the feasibility of system design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信