Zheng Feng, Rajendra Rana Bhat, Xiaoyong Yuan, Daniel Freeman, Tezcan Baslanti, Azra Bihorac, Xiaolin Li
{"title":"智能围手术期系统:面向手术风险评估的实时大数据分析。","authors":"Zheng Feng, Rajendra Rana Bhat, Xiaoyong Yuan, Daniel Freeman, Tezcan Baslanti, Azra Bihorac, Xiaolin Li","doi":"10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201","DOIUrl":null,"url":null,"abstract":"<p><p>Surgery risk assessment is an effective tool for physicians to manage the treatment of patients, but most current research projects fall short in providing a comprehensive platform to evaluate the patients' surgery risk in terms of different complications. The recent evolution of big data analysis techniques makes it possible to develop a real-time platform to dynamically analyze the surgery risk from large-scale patients information. In this paper, we propose the Intelligent Perioperative System (IPS), a real-time system that assesses the risk of postoperative complications (PC) and dynamically interacts with physicians to improve the predictive results. In order to process large volume patients data in real-time, we design the system by integrating several big data computing and storage frameworks with the high through-output streaming data processing components. We also implement a system prototype along with the visualization results to show the feasibility of system design.</p>","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"2017 ","pages":"1254-1259"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201","citationCount":"19","resultStr":"{\"title\":\"Intelligent Perioperative System: Towards Real-time Big Data Analytics in Surgery Risk Assessment.\",\"authors\":\"Zheng Feng, Rajendra Rana Bhat, Xiaoyong Yuan, Daniel Freeman, Tezcan Baslanti, Azra Bihorac, Xiaolin Li\",\"doi\":\"10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgery risk assessment is an effective tool for physicians to manage the treatment of patients, but most current research projects fall short in providing a comprehensive platform to evaluate the patients' surgery risk in terms of different complications. The recent evolution of big data analysis techniques makes it possible to develop a real-time platform to dynamically analyze the surgery risk from large-scale patients information. In this paper, we propose the Intelligent Perioperative System (IPS), a real-time system that assesses the risk of postoperative complications (PC) and dynamically interacts with physicians to improve the predictive results. In order to process large volume patients data in real-time, we design the system by integrating several big data computing and storage frameworks with the high through-output streaming data processing components. We also implement a system prototype along with the visualization results to show the feasibility of system design.</p>\",\"PeriodicalId\":92346,\"journal\":{\"name\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"volume\":\"2017 \",\"pages\":\"1254-1259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intelligent Perioperative System: Towards Real-time Big Data Analytics in Surgery Risk Assessment.
Surgery risk assessment is an effective tool for physicians to manage the treatment of patients, but most current research projects fall short in providing a comprehensive platform to evaluate the patients' surgery risk in terms of different complications. The recent evolution of big data analysis techniques makes it possible to develop a real-time platform to dynamically analyze the surgery risk from large-scale patients information. In this paper, we propose the Intelligent Perioperative System (IPS), a real-time system that assesses the risk of postoperative complications (PC) and dynamically interacts with physicians to improve the predictive results. In order to process large volume patients data in real-time, we design the system by integrating several big data computing and storage frameworks with the high through-output streaming data processing components. We also implement a system prototype along with the visualization results to show the feasibility of system design.