Yuzhe Yang, Jie Ying Chan, Nuri A Temiz, Douglas Yee
{"title":"Tyrphostin NT157抑制胰岛素受体底物抑制乳腺癌细胞对胰岛素样生长因子- 1和胰岛素的反应","authors":"Yuzhe Yang, Jie Ying Chan, Nuri A Temiz, Douglas Yee","doi":"10.1007/s12672-018-0343-8","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin and insulin-like growth factor (IGF) signaling systems regulate breast cancer growth, progression, and metastasis. The insulin receptor substrates 1 and 2 (IRS1/2) transduce signaling from the type I IGF receptor (IGF-IR) and insulin receptor (InR) to mediate the biological effects of receptor activation. In breast cancer, IRS-1 plays a critical role in cancer cell proliferation while IRS-2 is associated with motility and metastasis. NT157, a small-molecule tyrphostin, downregulates IRS proteins in several model systems. In breast cancer cells, NT157 treatment suppressed IRS protein expression in a dose-dependent manner. Exposure to NT157 inhibited the activation of downstream signaling mediated by the IRS proteins. NT157 induced a MAPK-dependent serine phosphorylation of IRS proteins which resulted in disassociation between IRS proteins and their receptors resulting in IRS degradation. In estrogen receptor-α-positive (ERα+) breast cancer cells (MCF-7 and T47D), NT157 also resulted in cytoplasmic ERα downregulation likely because of disruption of an IRS-1-IGF-IR/InR/ERα complex. NT157 decreased S phase fraction, monolayer, and anchorage-independent growth after IGF/insulin treatment in ERα+ breast cancer cells. NT157 downregulation of IRS protein expression also sensitized ERα+ breast cancer cells to rapamycin. Moreover, NT157 inhibited the growth of tamoxifen-resistant ERα+ breast cancer cells. Given that both IGF-IR and InR play a role in cancer biology, targeting of IRS adaptor proteins may be a more effective strategy to inhibit the function of these receptors.</p>","PeriodicalId":13060,"journal":{"name":"Hormones & Cancer","volume":" ","pages":"371-382"},"PeriodicalIF":3.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12672-018-0343-8","citationCount":"11","resultStr":"{\"title\":\"Insulin Receptor Substrate Suppression by the Tyrphostin NT157 Inhibits Responses to Insulin-Like Growth Factor-I and Insulin in Breast Cancer Cells.\",\"authors\":\"Yuzhe Yang, Jie Ying Chan, Nuri A Temiz, Douglas Yee\",\"doi\":\"10.1007/s12672-018-0343-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin and insulin-like growth factor (IGF) signaling systems regulate breast cancer growth, progression, and metastasis. The insulin receptor substrates 1 and 2 (IRS1/2) transduce signaling from the type I IGF receptor (IGF-IR) and insulin receptor (InR) to mediate the biological effects of receptor activation. In breast cancer, IRS-1 plays a critical role in cancer cell proliferation while IRS-2 is associated with motility and metastasis. NT157, a small-molecule tyrphostin, downregulates IRS proteins in several model systems. In breast cancer cells, NT157 treatment suppressed IRS protein expression in a dose-dependent manner. Exposure to NT157 inhibited the activation of downstream signaling mediated by the IRS proteins. NT157 induced a MAPK-dependent serine phosphorylation of IRS proteins which resulted in disassociation between IRS proteins and their receptors resulting in IRS degradation. In estrogen receptor-α-positive (ERα+) breast cancer cells (MCF-7 and T47D), NT157 also resulted in cytoplasmic ERα downregulation likely because of disruption of an IRS-1-IGF-IR/InR/ERα complex. NT157 decreased S phase fraction, monolayer, and anchorage-independent growth after IGF/insulin treatment in ERα+ breast cancer cells. NT157 downregulation of IRS protein expression also sensitized ERα+ breast cancer cells to rapamycin. Moreover, NT157 inhibited the growth of tamoxifen-resistant ERα+ breast cancer cells. Given that both IGF-IR and InR play a role in cancer biology, targeting of IRS adaptor proteins may be a more effective strategy to inhibit the function of these receptors.</p>\",\"PeriodicalId\":13060,\"journal\":{\"name\":\"Hormones & Cancer\",\"volume\":\" \",\"pages\":\"371-382\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12672-018-0343-8\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones & Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-018-0343-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones & Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-018-0343-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Insulin Receptor Substrate Suppression by the Tyrphostin NT157 Inhibits Responses to Insulin-Like Growth Factor-I and Insulin in Breast Cancer Cells.
Insulin and insulin-like growth factor (IGF) signaling systems regulate breast cancer growth, progression, and metastasis. The insulin receptor substrates 1 and 2 (IRS1/2) transduce signaling from the type I IGF receptor (IGF-IR) and insulin receptor (InR) to mediate the biological effects of receptor activation. In breast cancer, IRS-1 plays a critical role in cancer cell proliferation while IRS-2 is associated with motility and metastasis. NT157, a small-molecule tyrphostin, downregulates IRS proteins in several model systems. In breast cancer cells, NT157 treatment suppressed IRS protein expression in a dose-dependent manner. Exposure to NT157 inhibited the activation of downstream signaling mediated by the IRS proteins. NT157 induced a MAPK-dependent serine phosphorylation of IRS proteins which resulted in disassociation between IRS proteins and their receptors resulting in IRS degradation. In estrogen receptor-α-positive (ERα+) breast cancer cells (MCF-7 and T47D), NT157 also resulted in cytoplasmic ERα downregulation likely because of disruption of an IRS-1-IGF-IR/InR/ERα complex. NT157 decreased S phase fraction, monolayer, and anchorage-independent growth after IGF/insulin treatment in ERα+ breast cancer cells. NT157 downregulation of IRS protein expression also sensitized ERα+ breast cancer cells to rapamycin. Moreover, NT157 inhibited the growth of tamoxifen-resistant ERα+ breast cancer cells. Given that both IGF-IR and InR play a role in cancer biology, targeting of IRS adaptor proteins may be a more effective strategy to inhibit the function of these receptors.
期刊介绍:
Hormones and Cancer is a unique multidisciplinary translational journal featuring basic science, pre-clinical, epidemiological, and clinical research papers. It covers all aspects of the interface of Endocrinology and Oncology. Thus, the journal covers two main areas of research: Endocrine tumors (benign & malignant tumors of hormone secreting endocrine organs) and the effects of hormones on any type of tumor. We welcome all types of studies related to these fields, but our particular attention is on translational aspects of research. In addition to basic, pre-clinical, and epidemiological studies, we encourage submission of clinical studies including those that comprise small series of tumors in rare endocrine neoplasias and/or negative or confirmatory results provided that they significantly enhance our understanding of endocrine aspects of oncology. The journal does not publish case studies.