用于法医分析的纳米颗粒显微图像的自适应视觉分类和总结。

Elizabeth Jurrus, Nathan Hodas, Nathan Baker, Tim Marrinan, Mark D Hoover
{"title":"用于法医分析的纳米颗粒显微图像的自适应视觉分类和总结。","authors":"Elizabeth Jurrus,&nbsp;Nathan Hodas,&nbsp;Nathan Baker,&nbsp;Tim Marrinan,&nbsp;Mark D Hoover","doi":"10.1109/THS.2016.7568959","DOIUrl":null,"url":null,"abstract":"<p><p>Image classification of nanoparticles from scanning electron microscopes for nuclear forensic analysis is a long, time consuming process. Months of analyst time may initially be required to sift through images in order to categorize morphological characteristics associated with nanoparticle identification. Subsequent assessment of newly acquired images against identified characteristics can be equally time consuming. We present INStINCt, our Intelligent Signature Canvas, as a framework for quickly organizing image data in a web-based canvas framework that partitions images based on features derived from convolutional neural networks. This work is demonstrated using particle images from an aerosol study conducted by Pacific Northwest National Laboratory under the auspices of the U.S. Army Public Health Command to determine depleted uranium aerosol doses and risks.</p>","PeriodicalId":92318,"journal":{"name":"... IEEE International Symposium on Technologies for Homeland Security (HST). IEEE International Symposium on Technologies for Homeland Security","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/THS.2016.7568959","citationCount":"2","resultStr":"{\"title\":\"Adaptive Visual Sort and Summary of Micrographic Images of Nanoparticles for Forensic Analysis.\",\"authors\":\"Elizabeth Jurrus,&nbsp;Nathan Hodas,&nbsp;Nathan Baker,&nbsp;Tim Marrinan,&nbsp;Mark D Hoover\",\"doi\":\"10.1109/THS.2016.7568959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image classification of nanoparticles from scanning electron microscopes for nuclear forensic analysis is a long, time consuming process. Months of analyst time may initially be required to sift through images in order to categorize morphological characteristics associated with nanoparticle identification. Subsequent assessment of newly acquired images against identified characteristics can be equally time consuming. We present INStINCt, our Intelligent Signature Canvas, as a framework for quickly organizing image data in a web-based canvas framework that partitions images based on features derived from convolutional neural networks. This work is demonstrated using particle images from an aerosol study conducted by Pacific Northwest National Laboratory under the auspices of the U.S. Army Public Health Command to determine depleted uranium aerosol doses and risks.</p>\",\"PeriodicalId\":92318,\"journal\":{\"name\":\"... IEEE International Symposium on Technologies for Homeland Security (HST). IEEE International Symposium on Technologies for Homeland Security\",\"volume\":\"2016 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/THS.2016.7568959\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE International Symposium on Technologies for Homeland Security (HST). IEEE International Symposium on Technologies for Homeland Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THS.2016.7568959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Symposium on Technologies for Homeland Security (HST). IEEE International Symposium on Technologies for Homeland Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THS.2016.7568959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

核法医分析用扫描电子显微镜对纳米颗粒图像进行分类是一个漫长而耗时的过程。最初可能需要几个月的分析时间来筛选图像,以便对与纳米颗粒鉴定相关的形态特征进行分类。根据已识别的特征对新获得的图像进行后续评估可能同样耗时。我们展示了我们的智能签名画布本能,作为一个框架,用于在基于web的画布框架中快速组织图像数据,该框架基于卷积神经网络衍生的特征对图像进行分区。这项工作是通过太平洋西北国家实验室在美国陆军公共卫生司令部的支持下进行的气溶胶研究中的粒子图像来证明的,以确定贫铀气溶胶的剂量和风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adaptive Visual Sort and Summary of Micrographic Images of Nanoparticles for Forensic Analysis.

Adaptive Visual Sort and Summary of Micrographic Images of Nanoparticles for Forensic Analysis.

Adaptive Visual Sort and Summary of Micrographic Images of Nanoparticles for Forensic Analysis.

Image classification of nanoparticles from scanning electron microscopes for nuclear forensic analysis is a long, time consuming process. Months of analyst time may initially be required to sift through images in order to categorize morphological characteristics associated with nanoparticle identification. Subsequent assessment of newly acquired images against identified characteristics can be equally time consuming. We present INStINCt, our Intelligent Signature Canvas, as a framework for quickly organizing image data in a web-based canvas framework that partitions images based on features derived from convolutional neural networks. This work is demonstrated using particle images from an aerosol study conducted by Pacific Northwest National Laboratory under the auspices of the U.S. Army Public Health Command to determine depleted uranium aerosol doses and risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信