使用DyNet应用程序对动态网络进行分析和可视化

Q1 Biochemistry, Genetics and Molecular Biology
John Salamon, Ivan H. Goenawan, David J. Lynn
{"title":"使用DyNet应用程序对动态网络进行分析和可视化","authors":"John Salamon,&nbsp;Ivan H. Goenawan,&nbsp;David J. Lynn","doi":"10.1002/cpbi.55","DOIUrl":null,"url":null,"abstract":"<p>Biological processes are regulated at a cellular level by tightly controlled molecular interaction networks, which are collectively known as the interactome. The interactome is not a static entity, but instead is dynamically reorganized or “rewired” under varying temporal, spatial, and environmental conditions. Most network analysis and visualization tools have, to date, been developed for static representations of molecular interaction data. Here, we describe a protocol that provides a step-by-step guide to DyNet, a Cytoscape 3 application that facilitates the visualization and analysis of dynamic molecular interaction networks. DyNet represents a dynamic network as a set of state graphs that are synchronized in their layout. This synchronization is managed in real time and is automatically updated when a graph is manipulated by a user (e.g., dragging, zooming, moving a node). DyNet also provides several statistical tools enabling users to quickly identify and analyze the most ‘rewired’ nodes across many network states. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpbi.55","citationCount":"4","resultStr":"{\"title\":\"Analysis and Visualization of Dynamic Networks Using the DyNet App for Cytoscape\",\"authors\":\"John Salamon,&nbsp;Ivan H. Goenawan,&nbsp;David J. Lynn\",\"doi\":\"10.1002/cpbi.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biological processes are regulated at a cellular level by tightly controlled molecular interaction networks, which are collectively known as the interactome. The interactome is not a static entity, but instead is dynamically reorganized or “rewired” under varying temporal, spatial, and environmental conditions. Most network analysis and visualization tools have, to date, been developed for static representations of molecular interaction data. Here, we describe a protocol that provides a step-by-step guide to DyNet, a Cytoscape 3 application that facilitates the visualization and analysis of dynamic molecular interaction networks. DyNet represents a dynamic network as a set of state graphs that are synchronized in their layout. This synchronization is managed in real time and is automatically updated when a graph is manipulated by a user (e.g., dragging, zooming, moving a node). DyNet also provides several statistical tools enabling users to quickly identify and analyze the most ‘rewired’ nodes across many network states. © 2018 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10958,\"journal\":{\"name\":\"Current protocols in bioinformatics\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpbi.55\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

生物过程在细胞水平上通过严格控制的分子相互作用网络进行调节,这些相互作用网络统称为相互作用组。交互组不是一个静态的实体,而是在不同的时间、空间和环境条件下动态地重新组织或“重新连接”。迄今为止,大多数网络分析和可视化工具都是为分子相互作用数据的静态表示而开发的。在这里,我们描述了一个协议,它为DyNet提供了一步一步的指导,DyNet是一个Cytoscape 3应用程序,可以促进动态分子相互作用网络的可视化和分析。DyNet将动态网络表示为一组在其布局中同步的状态图。这种同步是实时管理的,当图形被用户操作(例如,拖动、缩放、移动节点)时,会自动更新。DyNet还提供了几种统计工具,使用户能够快速识别和分析许多网络状态下最“重新连接”的节点。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Visualization of Dynamic Networks Using the DyNet App for Cytoscape

Biological processes are regulated at a cellular level by tightly controlled molecular interaction networks, which are collectively known as the interactome. The interactome is not a static entity, but instead is dynamically reorganized or “rewired” under varying temporal, spatial, and environmental conditions. Most network analysis and visualization tools have, to date, been developed for static representations of molecular interaction data. Here, we describe a protocol that provides a step-by-step guide to DyNet, a Cytoscape 3 application that facilitates the visualization and analysis of dynamic molecular interaction networks. DyNet represents a dynamic network as a set of state graphs that are synchronized in their layout. This synchronization is managed in real time and is automatically updated when a graph is manipulated by a user (e.g., dragging, zooming, moving a node). DyNet also provides several statistical tools enabling users to quickly identify and analyze the most ‘rewired’ nodes across many network states. © 2018 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in bioinformatics
Current protocols in bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With Current Protocols in Bioinformatics, it"s easier than ever for the life scientist to become "fluent" in bioinformatics and master the exciting new frontiers opened up by DNA sequencing. Updated every three months in all formats, CPBI is constantly evolving to keep pace with the very latest discoveries and developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信