Maureen Stone, Jonghye Woo, Junghoon Lee, Tera Poole, Amy Seagraves, Michael Chung, Eric Kim, Emi Z Murano, Jerry L Prince, Silvia S Blemker
{"title":"人类舌肌解剖学的结构和变异性。","authors":"Maureen Stone, Jonghye Woo, Junghoon Lee, Tera Poole, Amy Seagraves, Michael Chung, Eric Kim, Emi Z Murano, Jerry L Prince, Silvia S Blemker","doi":"10.1080/21681163.2016.1162752","DOIUrl":null,"url":null,"abstract":"<p><p>The human tongue has a complex architecture, consistent with its complex roles in eating, speaking and breathing. Tongue muscle architecture has been depicted in drawings and photographs, but not quantified volumetrically. This paper aims to fill that gap by measuring the muscle architecture of the tongue for 14 people captured in high-resolution 3D MRI volumes. The results show the structure, relationships and variability among the muscles, as well as the effects of age, gender and weight on muscle volume. Since the tongue consists of partially interdigitated muscles, we consider the muscle volumes in two ways. The functional muscle volume encompasses the region of the tongue served by the muscle. The structural volume halves the volume of the muscle in regions where it interdigitates with other muscles. Results show similarity of scaling across subjects, and speculate on functional effects of the anatomical structure.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21681163.2016.1162752","citationCount":"41","resultStr":"{\"title\":\"Structure and variability in human tongue muscle anatomy.\",\"authors\":\"Maureen Stone, Jonghye Woo, Junghoon Lee, Tera Poole, Amy Seagraves, Michael Chung, Eric Kim, Emi Z Murano, Jerry L Prince, Silvia S Blemker\",\"doi\":\"10.1080/21681163.2016.1162752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human tongue has a complex architecture, consistent with its complex roles in eating, speaking and breathing. Tongue muscle architecture has been depicted in drawings and photographs, but not quantified volumetrically. This paper aims to fill that gap by measuring the muscle architecture of the tongue for 14 people captured in high-resolution 3D MRI volumes. The results show the structure, relationships and variability among the muscles, as well as the effects of age, gender and weight on muscle volume. Since the tongue consists of partially interdigitated muscles, we consider the muscle volumes in two ways. The functional muscle volume encompasses the region of the tongue served by the muscle. The structural volume halves the volume of the muscle in regions where it interdigitates with other muscles. Results show similarity of scaling across subjects, and speculate on functional effects of the anatomical structure.</p>\",\"PeriodicalId\":51800,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21681163.2016.1162752\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681163.2016.1162752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2016.1162752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/4/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Structure and variability in human tongue muscle anatomy.
The human tongue has a complex architecture, consistent with its complex roles in eating, speaking and breathing. Tongue muscle architecture has been depicted in drawings and photographs, but not quantified volumetrically. This paper aims to fill that gap by measuring the muscle architecture of the tongue for 14 people captured in high-resolution 3D MRI volumes. The results show the structure, relationships and variability among the muscles, as well as the effects of age, gender and weight on muscle volume. Since the tongue consists of partially interdigitated muscles, we consider the muscle volumes in two ways. The functional muscle volume encompasses the region of the tongue served by the muscle. The structural volume halves the volume of the muscle in regions where it interdigitates with other muscles. Results show similarity of scaling across subjects, and speculate on functional effects of the anatomical structure.
期刊介绍:
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.