{"title":"广义k-贝塞尔函数的微分方程和不等式。","authors":"Saiful R Mondal, Mohamed S Akel","doi":"10.1186/s13660-018-1772-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce and study a generalization of the k-Bessel function of order <i>ν</i> given by <dispformula><math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><mi>∞</mi></munderover><mfrac><msup><mrow><mo>(</mo><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mi>r</mi></msup><mrow><msub><mi>Γ</mi><mi>k</mi></msub><mo>(</mo><mi>r</mi><mi>k</mi><mo>+</mo><mi>ν</mi><mo>+</mo><mi>k</mi><mo>)</mo><mi>r</mi><mo>!</mo></mrow></mfrac><msup><mrow><mo>(</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>)</mo></mrow><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mfrac><mi>ν</mi><mi>k</mi></mfrac></mrow></msup><mo>.</mo></math></dispformula> We also indicate some representation formulae for the function introduced. Further, we show that the function <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> is a solution of a second-order differential equation. We investigate monotonicity and log-convexity properties of the generalized k-Bessel function <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> , particularly, in the case <math><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> . We establish several inequalities, including a Turán-type inequality. We propose an open problem regarding the pattern of the zeroes of <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> .</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1772-1","citationCount":"9","resultStr":"{\"title\":\"Differential equation and inequalities of the generalized k-Bessel functions.\",\"authors\":\"Saiful R Mondal, Mohamed S Akel\",\"doi\":\"10.1186/s13660-018-1772-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we introduce and study a generalization of the k-Bessel function of order <i>ν</i> given by <dispformula><math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><mi>∞</mi></munderover><mfrac><msup><mrow><mo>(</mo><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mi>r</mi></msup><mrow><msub><mi>Γ</mi><mi>k</mi></msub><mo>(</mo><mi>r</mi><mi>k</mi><mo>+</mo><mi>ν</mi><mo>+</mo><mi>k</mi><mo>)</mo><mi>r</mi><mo>!</mo></mrow></mfrac><msup><mrow><mo>(</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>)</mo></mrow><mrow><mn>2</mn><mi>r</mi><mo>+</mo><mfrac><mi>ν</mi><mi>k</mi></mfrac></mrow></msup><mo>.</mo></math></dispformula> We also indicate some representation formulae for the function introduced. Further, we show that the function <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> is a solution of a second-order differential equation. We investigate monotonicity and log-convexity properties of the generalized k-Bessel function <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> , particularly, in the case <math><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> . We establish several inequalities, including a Turán-type inequality. We propose an open problem regarding the pattern of the zeroes of <math><msubsup><mi>W</mi><mrow><mi>ν</mi><mo>,</mo><mi>c</mi></mrow><mi>k</mi></msubsup></math> .</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1772-1\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1772-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1772-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Differential equation and inequalities of the generalized k-Bessel functions.
In this paper, we introduce and study a generalization of the k-Bessel function of order ν given by We also indicate some representation formulae for the function introduced. Further, we show that the function is a solution of a second-order differential equation. We investigate monotonicity and log-convexity properties of the generalized k-Bessel function , particularly, in the case . We establish several inequalities, including a Turán-type inequality. We propose an open problem regarding the pattern of the zeroes of .
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.