Naveed Ahmad, Hira Ashraf Baig, Ghaus Ur Rahman, M Shoaib Saleem
{"title":"Sobolev在时间尺度上的嵌入。","authors":"Naveed Ahmad, Hira Ashraf Baig, Ghaus Ur Rahman, M Shoaib Saleem","doi":"10.1186/s13660-018-1730-y","DOIUrl":null,"url":null,"abstract":"<p><p>For <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>n</mi></math> , the embeddings of Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> of functions defined on an open subset of an arbitrary time scale <math><msup><mi>T</mi><mi>n</mi></msup></math> , <math><mi>n</mi><mo>≥</mo><mn>1</mn></math> , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 2006) for <math><mi>n</mi><mo>=</mo><mn>1</mn></math> and later generalized to arbitrary <math><mi>n</mi><mo>≥</mo><mn>1</mn></math> in (Su et al. in Dyn. Partial Differ. Equ. 12(3):241-263, 2015). In this article we present the embeddings of Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> for <math><mi>n</mi><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></math> and then, using these embeddings, we develop general Sobolev's embedding for the Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> on time scales, where <i>k</i> is a non-negative integer and <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></math> .</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"134"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1730-y","citationCount":"1","resultStr":"{\"title\":\"Sobolev's embedding on time scales.\",\"authors\":\"Naveed Ahmad, Hira Ashraf Baig, Ghaus Ur Rahman, M Shoaib Saleem\",\"doi\":\"10.1186/s13660-018-1730-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>n</mi></math> , the embeddings of Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> of functions defined on an open subset of an arbitrary time scale <math><msup><mi>T</mi><mi>n</mi></msup></math> , <math><mi>n</mi><mo>≥</mo><mn>1</mn></math> , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 2006) for <math><mi>n</mi><mo>=</mo><mn>1</mn></math> and later generalized to arbitrary <math><mi>n</mi><mo>≥</mo><mn>1</mn></math> in (Su et al. in Dyn. Partial Differ. Equ. 12(3):241-263, 2015). In this article we present the embeddings of Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> for <math><mi>n</mi><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></math> and then, using these embeddings, we develop general Sobolev's embedding for the Sobolev spaces <math><msubsup><mi>W</mi><mi>Δ</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mi>Ω</mi><msup><mi>T</mi><mi>n</mi></msup></msub><mo>)</mo></math> on time scales, where <i>k</i> is a non-negative integer and <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>∞</mi></math> .</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"2018 1\",\"pages\":\"134\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1730-y\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1730-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1730-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
摘要
对于1≤pn,定义在任意时间尺度Tn, n≥1的开放子集上的函数的Sobolev空间WΔ1,p(ΩTn)的嵌入具有Lebesgue Δ-measure,在Adv. Differ中(Agarwal et al.)得到了发展。方程2006:38121,2006),后来推广到任意n≥1在(Su等人在Dyn. Partial Differ。方程12(3):241-263,2015)。在本文中,我们给出了n≤p≤∞时Sobolev空间WΔ1,p(ΩTn)的嵌入,然后,利用这些嵌入,我们开发了时间尺度上Sobolev空间WΔ1,p(ΩTn)的一般Sobolev嵌入,其中k是一个非负整数且1≤p≤∞。
For , the embeddings of Sobolev spaces of functions defined on an open subset of an arbitrary time scale , , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 2006) for and later generalized to arbitrary in (Su et al. in Dyn. Partial Differ. Equ. 12(3):241-263, 2015). In this article we present the embeddings of Sobolev spaces for and then, using these embeddings, we develop general Sobolev's embedding for the Sobolev spaces on time scales, where k is a non-negative integer and .
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.