不可约二次多项式的平均除数的显式上界。

Pub Date : 2018-01-01 Epub Date: 2017-05-27 DOI:10.1007/s00605-017-1061-y
Kostadinka Lapkova
{"title":"不可约二次多项式的平均除数的显式上界。","authors":"Kostadinka Lapkova","doi":"10.1007/s00605-017-1061-y","DOIUrl":null,"url":null,"abstract":"<p><p>Consider the divisor sum <math><mrow><msub><mo>∑</mo><mrow><mi>n</mi><mo>≤</mo><mi>N</mi></mrow></msub><mi>τ</mi><mrow><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>b</mi><mi>n</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow></mrow></math> for integers <i>b</i> and <i>c</i>. We extract an asymptotic formula for the average divisor sum in a convenient form, and provide an explicit upper bound for this sum with the correct main term. As an application we give an improvement of the maximal possible number of <math><mrow><mi>D</mi><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></math> -quadruples.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-017-1061-y","citationCount":"9","resultStr":"{\"title\":\"Explicit upper bound for the average number of divisors of irreducible quadratic polynomials.\",\"authors\":\"Kostadinka Lapkova\",\"doi\":\"10.1007/s00605-017-1061-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Consider the divisor sum <math><mrow><msub><mo>∑</mo><mrow><mi>n</mi><mo>≤</mo><mi>N</mi></mrow></msub><mi>τ</mi><mrow><mo>(</mo><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>b</mi><mi>n</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow></mrow></math> for integers <i>b</i> and <i>c</i>. We extract an asymptotic formula for the average divisor sum in a convenient form, and provide an explicit upper bound for this sum with the correct main term. As an application we give an improvement of the maximal possible number of <math><mrow><mi>D</mi><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></math> -quadruples.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-017-1061-y\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-017-1061-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-017-1061-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

考虑整数b和c的除数和∑n≤Nτ(n2+ 20亿+c)。我们以方便的形式给出了平均除数和的渐近公式,并给出了该和的显式上界和正确的主项。作为一个应用,我们给出了D(-1) -四重组的最大可能数的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Explicit upper bound for the average number of divisors of irreducible quadratic polynomials.

Consider the divisor sum nNτ(n2+2bn+c) for integers b and c. We extract an asymptotic formula for the average divisor sum in a convenient form, and provide an explicit upper bound for this sum with the correct main term. As an application we give an improvement of the maximal possible number of D(-1) -quadruples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信