非变性条件下的一维电泳

Q1 Biochemistry, Genetics and Molecular Biology
Sean R. Gallagher
{"title":"非变性条件下的一维电泳","authors":"Sean R. Gallagher","doi":"10.1002/cpps.73","DOIUrl":null,"url":null,"abstract":"<p>Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit composition, track post-translational modifications, and verify identity and homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentration. Nondenaturing or “native” electrophoresis—i.e., electrophoresis in the absence of denaturants such as detergents and urea—is an often-overlooked technique for determining the native size, subunit structure, and optimal separation of a protein. Because mobility depends on the size, shape, and intrinsic charge of the protein, nondenaturing electrophoresis provides a set of separation parameters distinctly different from mainly size-dependent denaturing sodium dodecyl sulfate—polyacrylamide gel electrophoresis and charge-dependent isoelectric focusing. Two protocols are presented below. Continuous PAGE is highly flexible, permitting cationic and anionic electrophoresis over a full range of pH. The discontinuous procedure is limited to proteins negatively charged at neutral pH but provides high resolution for accurate size calibration.</p>","PeriodicalId":10866,"journal":{"name":"Current Protocols in Protein Science","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpps.73","citationCount":"5","resultStr":"{\"title\":\"One-Dimensional Electrophoresis Using Nondenaturing Conditions\",\"authors\":\"Sean R. Gallagher\",\"doi\":\"10.1002/cpps.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit composition, track post-translational modifications, and verify identity and homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentration. Nondenaturing or “native” electrophoresis—i.e., electrophoresis in the absence of denaturants such as detergents and urea—is an often-overlooked technique for determining the native size, subunit structure, and optimal separation of a protein. Because mobility depends on the size, shape, and intrinsic charge of the protein, nondenaturing electrophoresis provides a set of separation parameters distinctly different from mainly size-dependent denaturing sodium dodecyl sulfate—polyacrylamide gel electrophoresis and charge-dependent isoelectric focusing. Two protocols are presented below. Continuous PAGE is highly flexible, permitting cationic and anionic electrophoresis over a full range of pH. The discontinuous procedure is limited to proteins negatively charged at neutral pH but provides high resolution for accurate size calibration.</p>\",\"PeriodicalId\":10866,\"journal\":{\"name\":\"Current Protocols in Protein Science\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpps.73\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Protein Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpps.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Protein Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpps.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5

摘要

电泳用于分离复杂的蛋白质混合物(例如,来自细胞、亚细胞组分、柱组分或免疫沉淀物),研究亚基组成,跟踪翻译后修饰,验证蛋白质样品的同一性和均匀性。它还可以用于纯化蛋白质,用于进一步的应用。在聚丙烯酰胺凝胶电泳中,蛋白质响应电场通过聚丙烯酰胺凝胶基质中的孔隙迁移;孔径随丙烯酰胺浓度的增加而减小。非变性或“天然”电泳-即:在没有变性剂(如洗涤剂和尿素)的情况下,电泳是一种经常被忽视的技术,用于确定蛋白质的天然大小、亚基结构和最佳分离。由于迁移率取决于蛋白质的大小、形状和固有电荷,非变性电泳提供了一组明显不同于主要依赖于尺寸的变性十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和电荷依赖的等电聚焦的分离参数。下面提出了两种方案。连续PAGE高度灵活,允许在整个pH范围内进行阳离子和阴离子电泳。不连续的程序仅限于在中性pH下带负电荷的蛋白质,但为准确的尺寸校准提供了高分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Dimensional Electrophoresis Using Nondenaturing Conditions

Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit composition, track post-translational modifications, and verify identity and homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentration. Nondenaturing or “native” electrophoresis—i.e., electrophoresis in the absence of denaturants such as detergents and urea—is an often-overlooked technique for determining the native size, subunit structure, and optimal separation of a protein. Because mobility depends on the size, shape, and intrinsic charge of the protein, nondenaturing electrophoresis provides a set of separation parameters distinctly different from mainly size-dependent denaturing sodium dodecyl sulfate—polyacrylamide gel electrophoresis and charge-dependent isoelectric focusing. Two protocols are presented below. Continuous PAGE is highly flexible, permitting cationic and anionic electrophoresis over a full range of pH. The discontinuous procedure is limited to proteins negatively charged at neutral pH but provides high resolution for accurate size calibration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Protein Science
Current Protocols in Protein Science Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With the mapping of the human genome, more and more researchers are exploring protein structures and functions in living organisms. Current Protocols in Protein Science provides protein scientists, biochemists, molecular biologists, geneticists, and others with the first comprehensive suite of protocols for this growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信