Bruno Buonomo, Rossella Della Marca, Alberto d'Onofrio
{"title":"行为疫苗模型中的最佳公共卫生干预:季节性、行为和潜伏期之间的相互作用。","authors":"Bruno Buonomo, Rossella Della Marca, Alberto d'Onofrio","doi":"10.1093/imammb/dqy011","DOIUrl":null,"url":null,"abstract":"<p><p>Hesitancy and refusal of vaccines preventing childhood diseases are spreading due to 'pseudo-rational' behaviours: parents overweigh real and imaginary side effects of vaccines. Nonetheless, the 'Public Health System' (PHS) may enact public campaigns to favour vaccine uptake. To determine the optimal time profiles for such campaigns, we apply the optimal control theory to an extension of the susceptible-infectious-removed (SIR)-based behavioural vaccination model by d'Onofrio et al. (2012, PLoS ONE, 7, e45653). The new model is of susceptible-exposed-infectious-removed (SEIR) type under seasonal fluctuations of the transmission rate. Our objective is to minimize the total costs of the disease: the disease burden, the vaccination costs and a less usual cost: the economic burden to enact the PHS campaigns. We apply the Pontryagin minimum principle and numerically explore the impact of seasonality, human behaviour and latency rate on the control and spread of the target disease. We focus on two noteworthy case studies: the low (resp. intermediate) relative perceived risk of vaccine side effects and relatively low (resp. very low) speed of imitation. One general result is that seasonality may produce a remarkable impact on PHS campaigns aimed at controlling, via an increase of the vaccination uptake, the spread of a target infectious disease. In particular, a higher amplitude of the seasonal variation produces a higher effort and this, in turn, beneficially impacts the induced vaccine uptake since the larger is the strength of seasonality, the longer the vaccine propensity remains large. However, such increased effort is not able to fully compensate the action of seasonality on the prevalence.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":"36 3","pages":"297-324"},"PeriodicalIF":0.8000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqy011","citationCount":"11","resultStr":"{\"title\":\"Optimal public health intervention in a behavioural vaccination model: the interplay between seasonality, behaviour and latency period.\",\"authors\":\"Bruno Buonomo, Rossella Della Marca, Alberto d'Onofrio\",\"doi\":\"10.1093/imammb/dqy011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hesitancy and refusal of vaccines preventing childhood diseases are spreading due to 'pseudo-rational' behaviours: parents overweigh real and imaginary side effects of vaccines. Nonetheless, the 'Public Health System' (PHS) may enact public campaigns to favour vaccine uptake. To determine the optimal time profiles for such campaigns, we apply the optimal control theory to an extension of the susceptible-infectious-removed (SIR)-based behavioural vaccination model by d'Onofrio et al. (2012, PLoS ONE, 7, e45653). The new model is of susceptible-exposed-infectious-removed (SEIR) type under seasonal fluctuations of the transmission rate. Our objective is to minimize the total costs of the disease: the disease burden, the vaccination costs and a less usual cost: the economic burden to enact the PHS campaigns. We apply the Pontryagin minimum principle and numerically explore the impact of seasonality, human behaviour and latency rate on the control and spread of the target disease. We focus on two noteworthy case studies: the low (resp. intermediate) relative perceived risk of vaccine side effects and relatively low (resp. very low) speed of imitation. One general result is that seasonality may produce a remarkable impact on PHS campaigns aimed at controlling, via an increase of the vaccination uptake, the spread of a target infectious disease. In particular, a higher amplitude of the seasonal variation produces a higher effort and this, in turn, beneficially impacts the induced vaccine uptake since the larger is the strength of seasonality, the longer the vaccine propensity remains large. However, such increased effort is not able to fully compensate the action of seasonality on the prevalence.</p>\",\"PeriodicalId\":49863,\"journal\":{\"name\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"volume\":\"36 3\",\"pages\":\"297-324\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imammb/dqy011\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqy011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqy011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
Optimal public health intervention in a behavioural vaccination model: the interplay between seasonality, behaviour and latency period.
Hesitancy and refusal of vaccines preventing childhood diseases are spreading due to 'pseudo-rational' behaviours: parents overweigh real and imaginary side effects of vaccines. Nonetheless, the 'Public Health System' (PHS) may enact public campaigns to favour vaccine uptake. To determine the optimal time profiles for such campaigns, we apply the optimal control theory to an extension of the susceptible-infectious-removed (SIR)-based behavioural vaccination model by d'Onofrio et al. (2012, PLoS ONE, 7, e45653). The new model is of susceptible-exposed-infectious-removed (SEIR) type under seasonal fluctuations of the transmission rate. Our objective is to minimize the total costs of the disease: the disease burden, the vaccination costs and a less usual cost: the economic burden to enact the PHS campaigns. We apply the Pontryagin minimum principle and numerically explore the impact of seasonality, human behaviour and latency rate on the control and spread of the target disease. We focus on two noteworthy case studies: the low (resp. intermediate) relative perceived risk of vaccine side effects and relatively low (resp. very low) speed of imitation. One general result is that seasonality may produce a remarkable impact on PHS campaigns aimed at controlling, via an increase of the vaccination uptake, the spread of a target infectious disease. In particular, a higher amplitude of the seasonal variation produces a higher effort and this, in turn, beneficially impacts the induced vaccine uptake since the larger is the strength of seasonality, the longer the vaccine propensity remains large. However, such increased effort is not able to fully compensate the action of seasonality on the prevalence.
期刊介绍:
Formerly the IMA Journal of Mathematics Applied in Medicine and Biology.
Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged.
The journal welcomes contributions relevant to any area of the life sciences including:
-biomechanics-
biophysics-
cell biology-
developmental biology-
ecology and the environment-
epidemiology-
immunology-
infectious diseases-
neuroscience-
pharmacology-
physiology-
population biology