Babagnidé François Koladjo, Mesrob I Ohannessian, Elisabeth Gassiat
{"title":"物种丰富度估算的截断模型。","authors":"Babagnidé François Koladjo, Mesrob I Ohannessian, Elisabeth Gassiat","doi":"10.1515/ijb-2017-0035","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a truncation model for the abundance distribution in species richness estimation. This model is inherently semiparametric and incorporates an unknown truncation threshold between rare and abundant observations. Using the conditional likelihood, we derive a class of estimators for the parameters in this model by stepwise maximization. The species richness estimator is given by the integer maximizing the binomial likelihood, given all other parameters in the model. Under regularity conditions, we show that our estimators of the model parameters are asymptotically efficient. We recover Chaos lower bound estimator of species richness when the parametric part of the model is single-component Poisson. Thus our class of estimators strictly generalized the latter. We illustrate the performance of the proposed method in a simulation study, and compare it favorably to other widely-used estimators. We also give an application to estimating the number of distinct vocabulary words in French playwright Molière's Tartuffe.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2017-0035","citationCount":"0","resultStr":"{\"title\":\"A Truncation Model for Estimating Species Richness.\",\"authors\":\"Babagnidé François Koladjo, Mesrob I Ohannessian, Elisabeth Gassiat\",\"doi\":\"10.1515/ijb-2017-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a truncation model for the abundance distribution in species richness estimation. This model is inherently semiparametric and incorporates an unknown truncation threshold between rare and abundant observations. Using the conditional likelihood, we derive a class of estimators for the parameters in this model by stepwise maximization. The species richness estimator is given by the integer maximizing the binomial likelihood, given all other parameters in the model. Under regularity conditions, we show that our estimators of the model parameters are asymptotically efficient. We recover Chaos lower bound estimator of species richness when the parametric part of the model is single-component Poisson. Thus our class of estimators strictly generalized the latter. We illustrate the performance of the proposed method in a simulation study, and compare it favorably to other widely-used estimators. We also give an application to estimating the number of distinct vocabulary words in French playwright Molière's Tartuffe.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2017-0035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2017-0035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2017-0035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Truncation Model for Estimating Species Richness.
We propose a truncation model for the abundance distribution in species richness estimation. This model is inherently semiparametric and incorporates an unknown truncation threshold between rare and abundant observations. Using the conditional likelihood, we derive a class of estimators for the parameters in this model by stepwise maximization. The species richness estimator is given by the integer maximizing the binomial likelihood, given all other parameters in the model. Under regularity conditions, we show that our estimators of the model parameters are asymptotically efficient. We recover Chaos lower bound estimator of species richness when the parametric part of the model is single-component Poisson. Thus our class of estimators strictly generalized the latter. We illustrate the performance of the proposed method in a simulation study, and compare it favorably to other widely-used estimators. We also give an application to estimating the number of distinct vocabulary words in French playwright Molière's Tartuffe.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.