{"title":"合成磷酸钙纳米颗粒固定化水溶液中的铯。","authors":"Oksana Livitska, Nataliia Strutynska, Kateryna Loza, Oleg Prymak, Yuriy Prylutskyy, Olha Livitska, Matthias Epple, Nikolai Slobodyanik","doi":"10.1186/s13065-018-0455-9","DOIUrl":null,"url":null,"abstract":"<p><p>The particularities of cesium incorporation into synthetic calcium phosphates with either apatite or whitlockite-type structures were investigated using the sorption process from aqueous solution and further heating to 700 °C. The nanoparticles for sorption were prepared by wet precipitation from aqueous solutions at a fixed molar ratio of Ca/P = 1.67 and two different ratios of CO<sub>3</sub><sup>2-</sup>/PO<sub>4</sub><sup>3-</sup> (0 or 1). The obtained substituted calcium phosphates and corresponding samples after the sorption of cesium from solutions with different molar concentrations (c(Cs<sup>+</sup>) = 0.05, 0.1 and 0.25 mol L<sup>-1</sup>) were characterized by powder X-ray diffraction, FTIR spectroscopy, scanning electron microscopy and elemental analysis. Based on the combination of X-ray diffraction and elemental analyses data for the powders after sorption, the cesium incorporated in the apatite- or whitlockite-type structures and its amount increased with its concentration in the initial solution. For sodium-containing calcium phosphate even minor content of Cs<sup>+</sup> in its composition significantly changed the general principle of its transformation under annealing at 700 °C with the formation of a mixture of α-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and cesium-containing apatite-related phase. The obtained results indicate the perspective of using of complex substituted calcium phosphates nanoparticles for immobilization of cesium in the stable whitlockite- or apatite-type crystal materials.</p>","PeriodicalId":9842,"journal":{"name":"Chemistry Central Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13065-018-0455-9","citationCount":"3","resultStr":"{\"title\":\"Immobilization of cesium from aqueous solution using nanoparticles of synthetic calcium phosphates.\",\"authors\":\"Oksana Livitska, Nataliia Strutynska, Kateryna Loza, Oleg Prymak, Yuriy Prylutskyy, Olha Livitska, Matthias Epple, Nikolai Slobodyanik\",\"doi\":\"10.1186/s13065-018-0455-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The particularities of cesium incorporation into synthetic calcium phosphates with either apatite or whitlockite-type structures were investigated using the sorption process from aqueous solution and further heating to 700 °C. The nanoparticles for sorption were prepared by wet precipitation from aqueous solutions at a fixed molar ratio of Ca/P = 1.67 and two different ratios of CO<sub>3</sub><sup>2-</sup>/PO<sub>4</sub><sup>3-</sup> (0 or 1). The obtained substituted calcium phosphates and corresponding samples after the sorption of cesium from solutions with different molar concentrations (c(Cs<sup>+</sup>) = 0.05, 0.1 and 0.25 mol L<sup>-1</sup>) were characterized by powder X-ray diffraction, FTIR spectroscopy, scanning electron microscopy and elemental analysis. Based on the combination of X-ray diffraction and elemental analyses data for the powders after sorption, the cesium incorporated in the apatite- or whitlockite-type structures and its amount increased with its concentration in the initial solution. For sodium-containing calcium phosphate even minor content of Cs<sup>+</sup> in its composition significantly changed the general principle of its transformation under annealing at 700 °C with the formation of a mixture of α-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> and cesium-containing apatite-related phase. The obtained results indicate the perspective of using of complex substituted calcium phosphates nanoparticles for immobilization of cesium in the stable whitlockite- or apatite-type crystal materials.</p>\",\"PeriodicalId\":9842,\"journal\":{\"name\":\"Chemistry Central Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13065-018-0455-9\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Central Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13065-018-0455-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Central Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13065-018-0455-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
Immobilization of cesium from aqueous solution using nanoparticles of synthetic calcium phosphates.
The particularities of cesium incorporation into synthetic calcium phosphates with either apatite or whitlockite-type structures were investigated using the sorption process from aqueous solution and further heating to 700 °C. The nanoparticles for sorption were prepared by wet precipitation from aqueous solutions at a fixed molar ratio of Ca/P = 1.67 and two different ratios of CO32-/PO43- (0 or 1). The obtained substituted calcium phosphates and corresponding samples after the sorption of cesium from solutions with different molar concentrations (c(Cs+) = 0.05, 0.1 and 0.25 mol L-1) were characterized by powder X-ray diffraction, FTIR spectroscopy, scanning electron microscopy and elemental analysis. Based on the combination of X-ray diffraction and elemental analyses data for the powders after sorption, the cesium incorporated in the apatite- or whitlockite-type structures and its amount increased with its concentration in the initial solution. For sodium-containing calcium phosphate even minor content of Cs+ in its composition significantly changed the general principle of its transformation under annealing at 700 °C with the formation of a mixture of α-Ca3(PO4)2 and cesium-containing apatite-related phase. The obtained results indicate the perspective of using of complex substituted calcium phosphates nanoparticles for immobilization of cesium in the stable whitlockite- or apatite-type crystal materials.
期刊介绍:
BMC Chemistry is an open access, peer reviewed journal that considers all articles in the broad field of chemistry, including research on fundamental concepts, new developments and the application of chemical sciences to broad range of research fields, industry, and other disciplines. It provides an inclusive platform for the dissemination and discussion of chemistry to aid the advancement of all areas of research.
Sections:
-Analytical Chemistry
-Organic Chemistry
-Environmental and Energy Chemistry
-Agricultural and Food Chemistry
-Inorganic Chemistry
-Medicinal Chemistry
-Physical Chemistry
-Materials and Macromolecular Chemistry
-Green and Sustainable Chemistry