利用 Cas9 RNA 引导的核酸酶在小鼠体内制造点突变和表位标记的等位基因

Q1 Agricultural and Biological Sciences
Marina Gertsenstein, Lauryl M J Nutter
{"title":"利用 Cas9 RNA 引导的核酸酶在小鼠体内制造点突变和表位标记的等位基因","authors":"Marina Gertsenstein, Lauryl M J Nutter","doi":"10.1002/cpmo.40","DOIUrl":null,"url":null,"abstract":"<p><p>Mice carrying patient-associated point mutations are powerful tools to define the causality of single-nucleotide variants to disease states. Epitope tags enable immuno-based studies of genes for which no antibodies are available. These alleles enable detailed and precise developmental, mechanistic, and translational research. The first step in generating these alleles is to identify within the target sequence-the orthologous sequence for point mutations or the N or C terminus for epitope tags-appropriate Cas9 protospacer sequences. Subsequent steps include design and acquisition of a single-stranded oligonucleotide repair template, synthesis of a single guide RNA (sgRNA), collection of zygotes, and microinjection or electroporation of zygotes with Cas9 mRNA or protein, sgRNA, and repair template followed by screening of born mice for the presence of the desired sequence change. Quality control of mouse lines includes screening for random or multicopy insertions of the repair template and, depending on sgRNA sequence, off-target mutations introduced by Cas9. © 2018 by John Wiley & Sons, Inc.</p>","PeriodicalId":37980,"journal":{"name":"Current protocols in mouse biology","volume":"8 1","pages":"28-53"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249120/pdf/nihms926466.pdf","citationCount":"0","resultStr":"{\"title\":\"Engineering Point Mutant and Epitope-Tagged Alleles in Mice Using Cas9 RNA-Guided Nuclease.\",\"authors\":\"Marina Gertsenstein, Lauryl M J Nutter\",\"doi\":\"10.1002/cpmo.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mice carrying patient-associated point mutations are powerful tools to define the causality of single-nucleotide variants to disease states. Epitope tags enable immuno-based studies of genes for which no antibodies are available. These alleles enable detailed and precise developmental, mechanistic, and translational research. The first step in generating these alleles is to identify within the target sequence-the orthologous sequence for point mutations or the N or C terminus for epitope tags-appropriate Cas9 protospacer sequences. Subsequent steps include design and acquisition of a single-stranded oligonucleotide repair template, synthesis of a single guide RNA (sgRNA), collection of zygotes, and microinjection or electroporation of zygotes with Cas9 mRNA or protein, sgRNA, and repair template followed by screening of born mice for the presence of the desired sequence change. Quality control of mouse lines includes screening for random or multicopy insertions of the repair template and, depending on sgRNA sequence, off-target mutations introduced by Cas9. © 2018 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":37980,\"journal\":{\"name\":\"Current protocols in mouse biology\",\"volume\":\"8 1\",\"pages\":\"28-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249120/pdf/nihms926466.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in mouse biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpmo.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in mouse biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpmo.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

携带患者相关点突变的小鼠是确定单核苷酸变异与疾病状态因果关系的有力工具。表位标签可以对没有抗体的基因进行免疫研究。通过这些等位基因,可以进行详细而精确的发育、机理和转化研究。生成这些等位基因的第一步是在目标序列(点突变的同源序列或表位标签的 N 或 C 末端)中确定合适的 Cas9 原间隔序列。随后的步骤包括设计和获取单链寡核苷酸修复模板,合成单个引导 RNA(sgRNA),收集子代,用 Cas9 mRNA 或蛋白、sgRNA 和修复模板对子代进行微注射或电穿孔,然后筛选出生的小鼠是否存在所需的序列变化。小鼠品系的质量控制包括筛选修复模板的随机或多拷贝插入,以及根据 sgRNA 序列,筛选 Cas9 引入的脱靶突变。© 2018 by John Wiley & Sons, Inc.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Point Mutant and Epitope-Tagged Alleles in Mice Using Cas9 RNA-Guided Nuclease.

Mice carrying patient-associated point mutations are powerful tools to define the causality of single-nucleotide variants to disease states. Epitope tags enable immuno-based studies of genes for which no antibodies are available. These alleles enable detailed and precise developmental, mechanistic, and translational research. The first step in generating these alleles is to identify within the target sequence-the orthologous sequence for point mutations or the N or C terminus for epitope tags-appropriate Cas9 protospacer sequences. Subsequent steps include design and acquisition of a single-stranded oligonucleotide repair template, synthesis of a single guide RNA (sgRNA), collection of zygotes, and microinjection or electroporation of zygotes with Cas9 mRNA or protein, sgRNA, and repair template followed by screening of born mice for the presence of the desired sequence change. Quality control of mouse lines includes screening for random or multicopy insertions of the repair template and, depending on sgRNA sequence, off-target mutations introduced by Cas9. © 2018 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in mouse biology
Current protocols in mouse biology Agricultural and Biological Sciences-Animal Science and Zoology
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet, all too often, nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. The aim of Current Protocols in Mouse Biology is to provide the clearest, most detailed and reliable step-by-step instructions for protocols involving the use of mice in biomedical research. Written by experts in the field and extensively edited to our exacting standards, the protocols include all of the information necessary to complete an experiment in the laboratory—introduction, materials lists with supplier information, detailed step-by-step procedures with helpful annotations, recipes for reagents and solutions, illustrative figures and information-packed tables. Each article also provides invaluable discussions of background information, applications of the methods, important assumptions, key parameters, time considerations, and tips to help avoid common pitfalls and troubleshoot experiments. Furthermore, Current Protocols in Mouse Biology content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Mouse Biology brings together resources in mouse biology and genetics and provides a mouse protocol resource that covers all aspects of mouse biology. Current Protocols in Mouse Biology also permits optimization of mouse model usage, which is significantly impacted by both cost and ethical constraints. Optimal and standardized mouse protocols ultimately reduce experimental variability and reduce the number of animals used in mouse experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信