果蝇蛹视网膜IRM成员的转录交叉调控

IF 2.6 Q2 Medicine
Maiaro Cabral Rosa Machado , Felipe Berti Valer, Carlos Antonio Couto-lima , Ricardo Guelerman Pinheiro Ramos
{"title":"果蝇蛹视网膜IRM成员的转录交叉调控","authors":"Maiaro Cabral Rosa Machado ,&nbsp;Felipe Berti Valer,&nbsp;Carlos Antonio Couto-lima ,&nbsp;Ricardo Guelerman Pinheiro Ramos","doi":"10.1016/j.mod.2018.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>Cell adhesion molecules play a central role in morphogenesis, as they mediate the complex range of interactions between different cell types that result in their arrangement in multicellular organs and tissues. How their coordinated dynamic expression in space and time - an essential requirement for their function - is regulated at the genomic and transcriptional levels constitutes an important, albeit still little understood question. The Irre Cell Recognition Module (IRM) is a highly conserved phylogenetically group of structurally related single pass transmembrane glycoproteins belonging to the immunoglobulin superfamily that in <em>Drosophila melanogaster</em> are encoded by the genes <em>roughest</em> (<em>rst</em>), <em>kin-of-irre</em> (<em>kirre</em>), <em>sticks-and-stones</em> (<em>sns</em>) and <em>hibris</em> (<em>hbs</em>). Their cooperative and often partly redundant action are crucial to major developmental processes such axonal pathfinding, myoblast fusion and patterning of the pupal retina. In this latter system <em>rst</em> and <em>kirre</em> display a tightly regulated complementary transcriptional pattern so that lowering <em>rst</em> mRNA levels leads to a concomitant increase in <em>kirre</em> mRNA concentration. Here we investigated whether other IRM components are similarly co-regulated and the extent changes in their mRNA levels affect each other as well as their collective function in retinal patterning. Our results demonstrate that silencing any of the four IRM genes in 24% APF retinae changes the levels all other group members although only <em>kirre</em> and <em>hbs</em> mRNA levels are increased. Furthermore, expression, in a <em>rst</em> null background, of truncated versions of <em>rst</em> cDNA in which the portion encoding the intracellular domain has been partially or completely removed not only can still induce changes in mRNA levels of other IRM members but also result in Kirre mislocalization. Taken together, our data point to the presence of a highly precise and fine-tuned control mechanism coordinating IRM expression that may be crucial to the functional redundancy shown by its components during the patterning of the pupal retina.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"154 ","pages":"Pages 193-202"},"PeriodicalIF":2.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.07.006","citationCount":"5","resultStr":"{\"title\":\"Transcriptional cross-regulation of Irre Cell Recognition Module (IRM) members in the Drosophila pupal retina\",\"authors\":\"Maiaro Cabral Rosa Machado ,&nbsp;Felipe Berti Valer,&nbsp;Carlos Antonio Couto-lima ,&nbsp;Ricardo Guelerman Pinheiro Ramos\",\"doi\":\"10.1016/j.mod.2018.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cell adhesion molecules play a central role in morphogenesis, as they mediate the complex range of interactions between different cell types that result in their arrangement in multicellular organs and tissues. How their coordinated dynamic expression in space and time - an essential requirement for their function - is regulated at the genomic and transcriptional levels constitutes an important, albeit still little understood question. The Irre Cell Recognition Module (IRM) is a highly conserved phylogenetically group of structurally related single pass transmembrane glycoproteins belonging to the immunoglobulin superfamily that in <em>Drosophila melanogaster</em> are encoded by the genes <em>roughest</em> (<em>rst</em>), <em>kin-of-irre</em> (<em>kirre</em>), <em>sticks-and-stones</em> (<em>sns</em>) and <em>hibris</em> (<em>hbs</em>). Their cooperative and often partly redundant action are crucial to major developmental processes such axonal pathfinding, myoblast fusion and patterning of the pupal retina. In this latter system <em>rst</em> and <em>kirre</em> display a tightly regulated complementary transcriptional pattern so that lowering <em>rst</em> mRNA levels leads to a concomitant increase in <em>kirre</em> mRNA concentration. Here we investigated whether other IRM components are similarly co-regulated and the extent changes in their mRNA levels affect each other as well as their collective function in retinal patterning. Our results demonstrate that silencing any of the four IRM genes in 24% APF retinae changes the levels all other group members although only <em>kirre</em> and <em>hbs</em> mRNA levels are increased. Furthermore, expression, in a <em>rst</em> null background, of truncated versions of <em>rst</em> cDNA in which the portion encoding the intracellular domain has been partially or completely removed not only can still induce changes in mRNA levels of other IRM members but also result in Kirre mislocalization. Taken together, our data point to the presence of a highly precise and fine-tuned control mechanism coordinating IRM expression that may be crucial to the functional redundancy shown by its components during the patterning of the pupal retina.</p></div>\",\"PeriodicalId\":49844,\"journal\":{\"name\":\"Mechanisms of Development\",\"volume\":\"154 \",\"pages\":\"Pages 193-202\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mod.2018.07.006\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925477318300649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318300649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5

摘要

细胞粘附分子在形态发生中起着核心作用,因为它们介导不同细胞类型之间复杂的相互作用,从而导致它们在多细胞器官和组织中的排列。它们在空间和时间上的协调动态表达——这是它们功能的基本要求——是如何在基因组和转录水平上被调节的,这是一个重要的问题,尽管人们对这个问题知之甚少。IRM细胞识别模块(IRM)是一个高度保守的系统发育类群,属于免疫球蛋白超家族,在果蝇中由roughest (rst)、kin-of-irre (kirre)、sticks-and-stones (sns)和hibris (hbs)基因编码。它们的合作和部分冗余的作用对主要的发育过程至关重要,如轴突寻径、成肌细胞融合和蛹视网膜的模式。在后一种系统中,rst和kirre表现出严格调控的互补转录模式,因此降低rst mRNA水平会导致kirre mRNA浓度的增加。在这里,我们研究了其他IRM成分是否同样被共同调节,以及它们的mRNA水平的变化在多大程度上相互影响,以及它们在视网膜模式中的集体功能。我们的研究结果表明,在24%的APF视网膜中,沉默四种IRM基因中的任何一种都会改变所有其他组成员的mRNA水平,尽管只有kirre和hbs mRNA水平升高。此外,在rst零背景下,编码胞内结构域的部分被部分或完全去除的rst cDNA截短版本的表达不仅会引起其他IRM成员mRNA水平的变化,还会导致Kirre错定位。综上所述,我们的数据表明存在一种高度精确和微调的调节IRM表达的控制机制,这可能对其组成部分在蛹视网膜形成过程中显示的功能冗余至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptional cross-regulation of Irre Cell Recognition Module (IRM) members in the Drosophila pupal retina

Cell adhesion molecules play a central role in morphogenesis, as they mediate the complex range of interactions between different cell types that result in their arrangement in multicellular organs and tissues. How their coordinated dynamic expression in space and time - an essential requirement for their function - is regulated at the genomic and transcriptional levels constitutes an important, albeit still little understood question. The Irre Cell Recognition Module (IRM) is a highly conserved phylogenetically group of structurally related single pass transmembrane glycoproteins belonging to the immunoglobulin superfamily that in Drosophila melanogaster are encoded by the genes roughest (rst), kin-of-irre (kirre), sticks-and-stones (sns) and hibris (hbs). Their cooperative and often partly redundant action are crucial to major developmental processes such axonal pathfinding, myoblast fusion and patterning of the pupal retina. In this latter system rst and kirre display a tightly regulated complementary transcriptional pattern so that lowering rst mRNA levels leads to a concomitant increase in kirre mRNA concentration. Here we investigated whether other IRM components are similarly co-regulated and the extent changes in their mRNA levels affect each other as well as their collective function in retinal patterning. Our results demonstrate that silencing any of the four IRM genes in 24% APF retinae changes the levels all other group members although only kirre and hbs mRNA levels are increased. Furthermore, expression, in a rst null background, of truncated versions of rst cDNA in which the portion encoding the intracellular domain has been partially or completely removed not only can still induce changes in mRNA levels of other IRM members but also result in Kirre mislocalization. Taken together, our data point to the presence of a highly precise and fine-tuned control mechanism coordinating IRM expression that may be crucial to the functional redundancy shown by its components during the patterning of the pupal retina.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanisms of Development
Mechanisms of Development 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
12.4 weeks
期刊介绍: Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology. Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology. Areas of particular interest include: Cell and tissue morphogenesis Cell adhesion and migration Cell shape and polarity Biomechanics Theoretical modelling of cell and developmental biology Quantitative biology Stem cell biology Cell differentiation Cell proliferation and cell death Evo-Devo Membrane traffic Metabolic regulation Organ and organoid development Regeneration Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信