真菌倍性的流式细胞术分析

Robert T. Todd, Ann L. Braverman, Anna Selmecki
{"title":"真菌倍性的流式细胞术分析","authors":"Robert T. Todd,&nbsp;Ann L. Braverman,&nbsp;Anna Selmecki","doi":"10.1002/cpmc.58","DOIUrl":null,"url":null,"abstract":"<p>Ploidy, the number of sets of homologous chromosomes in a cell, can alter cellular physiology, gene regulation, and the spectrum of acquired mutations. Advances in single-cell flow cytometry have greatly improved the understanding of how genome size contributes to diverse biological processes including speciation, adaptation, pathogenesis, and tumorigenesis. For example, fungal pathogens can undergo whole genome duplications during infection of the human host and during acquisition of antifungal drug resistance. Quantification of ploidy is dramatically affected by the nucleic acid staining technique and the flow cytometry analysis of single cells. Ploidy in fungi is also impacted by samples that are heterogeneous for both ploidy and morphology, and control strains with known ploidy must be included in every flow cytometry experiment. To detect ploidy changes within fungal strains, the following protocol was developed to accurately and dependably interrogate single-cell ploidy. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":39967,"journal":{"name":"Current Protocols in Microbiology","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpmc.58","citationCount":"15","resultStr":"{\"title\":\"Flow Cytometry Analysis of Fungal Ploidy\",\"authors\":\"Robert T. Todd,&nbsp;Ann L. Braverman,&nbsp;Anna Selmecki\",\"doi\":\"10.1002/cpmc.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ploidy, the number of sets of homologous chromosomes in a cell, can alter cellular physiology, gene regulation, and the spectrum of acquired mutations. Advances in single-cell flow cytometry have greatly improved the understanding of how genome size contributes to diverse biological processes including speciation, adaptation, pathogenesis, and tumorigenesis. For example, fungal pathogens can undergo whole genome duplications during infection of the human host and during acquisition of antifungal drug resistance. Quantification of ploidy is dramatically affected by the nucleic acid staining technique and the flow cytometry analysis of single cells. Ploidy in fungi is also impacted by samples that are heterogeneous for both ploidy and morphology, and control strains with known ploidy must be included in every flow cytometry experiment. To detect ploidy changes within fungal strains, the following protocol was developed to accurately and dependably interrogate single-cell ploidy. © 2018 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":39967,\"journal\":{\"name\":\"Current Protocols in Microbiology\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpmc.58\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpmc.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpmc.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

倍性,即细胞中同源染色体的数量,可以改变细胞生理、基因调控和获得性突变的谱。单细胞流式细胞术的进步极大地提高了对基因组大小如何促进多种生物过程的理解,包括物种形成、适应、发病机制和肿瘤发生。例如,真菌病原体在感染人类宿主和获得抗真菌药物耐药性期间可以进行全基因组复制。核酸染色技术和单细胞流式细胞术分析对倍性的定量有很大影响。真菌的倍性也受到倍性和形态异质样品的影响,每次流式细胞术实验都必须包括具有已知倍性的对照菌株。为了检测真菌菌株的倍性变化,制定了以下方案,以准确可靠地询问单细胞倍性。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flow Cytometry Analysis of Fungal Ploidy

Flow Cytometry Analysis of Fungal Ploidy

Flow Cytometry Analysis of Fungal Ploidy

Flow Cytometry Analysis of Fungal Ploidy

Ploidy, the number of sets of homologous chromosomes in a cell, can alter cellular physiology, gene regulation, and the spectrum of acquired mutations. Advances in single-cell flow cytometry have greatly improved the understanding of how genome size contributes to diverse biological processes including speciation, adaptation, pathogenesis, and tumorigenesis. For example, fungal pathogens can undergo whole genome duplications during infection of the human host and during acquisition of antifungal drug resistance. Quantification of ploidy is dramatically affected by the nucleic acid staining technique and the flow cytometry analysis of single cells. Ploidy in fungi is also impacted by samples that are heterogeneous for both ploidy and morphology, and control strains with known ploidy must be included in every flow cytometry experiment. To detect ploidy changes within fungal strains, the following protocol was developed to accurately and dependably interrogate single-cell ploidy. © 2018 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Microbiology
Current Protocols in Microbiology Immunology and Microbiology-Parasitology
自引率
0.00%
发文量
0
期刊介绍: Current Protocols in Microbiology provides detailed, step-by-step instructions for analyzing bacteria, animal and plant viruses, fungi, protozoans and other microbes. It offers updated coverage of emerging technologies and concepts, such as biofilms, quorum sensing and quantitative PCR, as well as proteomic and genomic methods. It is the first comprehensive source of high-quality microbiology protocols that reflects and incorporates the new mandates and capabilities of this robust and rapidly evolving discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信