{"title":"一类新的鲁棒双样本wald型检验。","authors":"Abhik Ghosh, Nirian Martin, Ayanendranath Basu, Leandro Pardo","doi":"10.1515/ijb-2017-0023","DOIUrl":null,"url":null,"abstract":"<p><p>Parametric hypothesis testing associated with two independent samples arises frequently in several applications in biology, medical sciences, epidemiology, reliability and many more. In this paper, we propose robust Wald-type tests for testing such two sample problems using the minimum density power divergence estimators of the underlying parameters. In particular, we consider the simple two-sample hypothesis concerning the full parametric homogeneity as well as the general two-sample (composite) hypotheses involving some nuisance parameters. The asymptotic and theoretical robustness properties of the proposed Wald-type tests have been developed for both the simple and general composite hypotheses. Some particular cases of testing against one-sided alternatives are discussed with specific attention to testing the effectiveness of a treatment in clinical trials. Performances of the proposed tests have also been illustrated numerically through appropriate real data examples.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"14 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2017-0023","citationCount":"11","resultStr":"{\"title\":\"A New Class of Robust Two-Sample Wald-Type Tests.\",\"authors\":\"Abhik Ghosh, Nirian Martin, Ayanendranath Basu, Leandro Pardo\",\"doi\":\"10.1515/ijb-2017-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parametric hypothesis testing associated with two independent samples arises frequently in several applications in biology, medical sciences, epidemiology, reliability and many more. In this paper, we propose robust Wald-type tests for testing such two sample problems using the minimum density power divergence estimators of the underlying parameters. In particular, we consider the simple two-sample hypothesis concerning the full parametric homogeneity as well as the general two-sample (composite) hypotheses involving some nuisance parameters. The asymptotic and theoretical robustness properties of the proposed Wald-type tests have been developed for both the simple and general composite hypotheses. Some particular cases of testing against one-sided alternatives are discussed with specific attention to testing the effectiveness of a treatment in clinical trials. Performances of the proposed tests have also been illustrated numerically through appropriate real data examples.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2017-0023\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2017-0023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2017-0023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Parametric hypothesis testing associated with two independent samples arises frequently in several applications in biology, medical sciences, epidemiology, reliability and many more. In this paper, we propose robust Wald-type tests for testing such two sample problems using the minimum density power divergence estimators of the underlying parameters. In particular, we consider the simple two-sample hypothesis concerning the full parametric homogeneity as well as the general two-sample (composite) hypotheses involving some nuisance parameters. The asymptotic and theoretical robustness properties of the proposed Wald-type tests have been developed for both the simple and general composite hypotheses. Some particular cases of testing against one-sided alternatives are discussed with specific attention to testing the effectiveness of a treatment in clinical trials. Performances of the proposed tests have also been illustrated numerically through appropriate real data examples.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.