逐层自组装的新兴策略和应用。

Q1 Engineering
Nanobiomedicine Pub Date : 2014-01-01 DOI:10.5772/60009
Deepak Rawtani, Yadvendra K Agrawal
{"title":"逐层自组装的新兴策略和应用。","authors":"Deepak Rawtani,&nbsp;Yadvendra K Agrawal","doi":"10.5772/60009","DOIUrl":null,"url":null,"abstract":"<p><p>Layer-by-layer self-assembly is an approach to develop an ultrathin film on solid support by alternate exposure to positive and negative species with spontaneous deposition of the oppositely charged ions. This paper summarizes various approaches used for fabrication of layer-by-layer self-assembly as well as their utility to produce various devices. The layer-by-layer technique is basically used for formation of multilayer films. A variety of nanomaterials use it for the modification of films to enhance their resultant durability as well as strength. Studies have shown that many different types of materials can be used for fabrication of multilayers. Recently the layer-by-layer self-assembly technique has also been used for fabrication of gas sensors, hydrogen sensors and solar-based cells. Various methods, such as spin deposition, calcinations, and dry-transfer printing are being used for fabrication of thin films. In this review, the author summarizes the various interesting properties as well as fabrication strategies of layer-by-layer self-assembly.</p>","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"1 ","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/60009","citationCount":"48","resultStr":"{\"title\":\"Emerging Strategies and Applications of Layer-by-Layer Self-Assembly.\",\"authors\":\"Deepak Rawtani,&nbsp;Yadvendra K Agrawal\",\"doi\":\"10.5772/60009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Layer-by-layer self-assembly is an approach to develop an ultrathin film on solid support by alternate exposure to positive and negative species with spontaneous deposition of the oppositely charged ions. This paper summarizes various approaches used for fabrication of layer-by-layer self-assembly as well as their utility to produce various devices. The layer-by-layer technique is basically used for formation of multilayer films. A variety of nanomaterials use it for the modification of films to enhance their resultant durability as well as strength. Studies have shown that many different types of materials can be used for fabrication of multilayers. Recently the layer-by-layer self-assembly technique has also been used for fabrication of gas sensors, hydrogen sensors and solar-based cells. Various methods, such as spin deposition, calcinations, and dry-transfer printing are being used for fabrication of thin films. In this review, the author summarizes the various interesting properties as well as fabrication strategies of layer-by-layer self-assembly.</p>\",\"PeriodicalId\":56366,\"journal\":{\"name\":\"Nanobiomedicine\",\"volume\":\"1 \",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5772/60009\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanobiomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/60009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/60009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 48

摘要

逐层自组装是一种通过交替暴露于正和负物种并自发沉积带相反电荷的离子在固体载体上形成超薄膜的方法。本文总结了用于制造逐层自组装的各种方法,以及它们在生产各种器件中的实用性。逐层技术基本上用于形成多层膜。各种纳米材料将其用于薄膜的改性,以提高其耐久性和强度。研究表明,许多不同类型的材料可以用于制造多层膜。近年来,逐层自组装技术也被用于制造气体传感器、氢传感器和太阳能电池。各种方法,如旋转沉积、煅烧和干转移印刷,正被用于制造薄膜。在这篇综述中,作者总结了逐层自组装的各种有趣的特性以及制造策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emerging Strategies and Applications of Layer-by-Layer Self-Assembly.

Emerging Strategies and Applications of Layer-by-Layer Self-Assembly.

Emerging Strategies and Applications of Layer-by-Layer Self-Assembly.

Layer-by-layer self-assembly is an approach to develop an ultrathin film on solid support by alternate exposure to positive and negative species with spontaneous deposition of the oppositely charged ions. This paper summarizes various approaches used for fabrication of layer-by-layer self-assembly as well as their utility to produce various devices. The layer-by-layer technique is basically used for formation of multilayer films. A variety of nanomaterials use it for the modification of films to enhance their resultant durability as well as strength. Studies have shown that many different types of materials can be used for fabrication of multilayers. Recently the layer-by-layer self-assembly technique has also been used for fabrication of gas sensors, hydrogen sensors and solar-based cells. Various methods, such as spin deposition, calcinations, and dry-transfer printing are being used for fabrication of thin films. In this review, the author summarizes the various interesting properties as well as fabrication strategies of layer-by-layer self-assembly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanobiomedicine
Nanobiomedicine Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍: Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信