{"title":"帕金森病蛋白繁殖假说的检验。","authors":"Alain Dagher, Yashar Zeighami","doi":"10.1177/1179069518786715","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most exciting recent hypotheses in neurology is that most neurodegenerative diseases are caused by the neuron to neuron propagation of prion-like misfolded proteins. In Parkinson disease, the theory initially emerged from postmortem studies demonstrating a caudal-rostral progression of pathology from lower brainstem to neocortex. Later, animal studies showed that the hallmark protein of PD, α-synuclein, exhibited all the characteristics of a prion. Here, we describe our work using human neuroimaging to test the theory that PD pathology advances via a propagating process along the connectome. We found that the pattern and progression of brain atrophy follow neuronal connectivity, correlate with clinical features, and identify an epicenter in the brainstem.</p>","PeriodicalId":15817,"journal":{"name":"Journal of Experimental Neuroscience","volume":"12 ","pages":"1179069518786715"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1179069518786715","citationCount":"21","resultStr":"{\"title\":\"Testing the Protein Propagation Hypothesis of Parkinson Disease.\",\"authors\":\"Alain Dagher, Yashar Zeighami\",\"doi\":\"10.1177/1179069518786715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most exciting recent hypotheses in neurology is that most neurodegenerative diseases are caused by the neuron to neuron propagation of prion-like misfolded proteins. In Parkinson disease, the theory initially emerged from postmortem studies demonstrating a caudal-rostral progression of pathology from lower brainstem to neocortex. Later, animal studies showed that the hallmark protein of PD, α-synuclein, exhibited all the characteristics of a prion. Here, we describe our work using human neuroimaging to test the theory that PD pathology advances via a propagating process along the connectome. We found that the pattern and progression of brain atrophy follow neuronal connectivity, correlate with clinical features, and identify an epicenter in the brainstem.</p>\",\"PeriodicalId\":15817,\"journal\":{\"name\":\"Journal of Experimental Neuroscience\",\"volume\":\"12 \",\"pages\":\"1179069518786715\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1179069518786715\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1179069518786715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1179069518786715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Testing the Protein Propagation Hypothesis of Parkinson Disease.
One of the most exciting recent hypotheses in neurology is that most neurodegenerative diseases are caused by the neuron to neuron propagation of prion-like misfolded proteins. In Parkinson disease, the theory initially emerged from postmortem studies demonstrating a caudal-rostral progression of pathology from lower brainstem to neocortex. Later, animal studies showed that the hallmark protein of PD, α-synuclein, exhibited all the characteristics of a prion. Here, we describe our work using human neuroimaging to test the theory that PD pathology advances via a propagating process along the connectome. We found that the pattern and progression of brain atrophy follow neuronal connectivity, correlate with clinical features, and identify an epicenter in the brainstem.