海底山的生物学:25年过去了。

3区 生物学 Q1 Agricultural and Biological Sciences
Advances in Marine Biology Pub Date : 2018-01-01 Epub Date: 2018-07-06 DOI:10.1016/bs.amb.2018.06.001
Alex D Rogers
{"title":"海底山的生物学:25年过去了。","authors":"Alex D Rogers","doi":"10.1016/bs.amb.2018.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Seamounts are one of the major biomes of the global ocean. The last 25 years of research has seen considerable advances in the understanding of these ecosystems. The interactions between seamounts and steady and variable flows have now been characterised providing a better mechanistic understanding of processes influencing biology. Processes leading to upwelling, including Taylor column formation and tidal rectification, have now been defined as well as those leading to draw down of organic matter from the ocean surface to seamount summit and flanks. There is also an improved understanding of the interactions between seamounts, zooplankton and micronekton communities especially with respect to increased predation pressure in the vicinity of seamounts. Evidence has accumulated of the role of seamounts as hot spots for ocean predators including large pelagic fish, sharks, pinnipeds, cetaceans and seabirds. The complexity of benthic communities associated with seamounts is high and drivers of biodiversity are now being resolved. Claims of high endemism resulting from isolation of seamounts as islands of habitat and speciation have not been supported. However, for species characterised by low dispersal capability, such as some groups of benthic sessile or low-mobility invertebrates, low connectivity between seamount populations has been found with evidence of endemism at a local level. Threats to seamounts have increased in the last 25 years and include overfishing, destructive fishing, marine litter, direct and indirect impacts of climate change and potentially marine mining in the near future. Issues around these threats and their management are discussed.</p>","PeriodicalId":50950,"journal":{"name":"Advances in Marine Biology","volume":"79 ","pages":"137-224"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.amb.2018.06.001","citationCount":"83","resultStr":"{\"title\":\"The Biology of Seamounts: 25 Years on.\",\"authors\":\"Alex D Rogers\",\"doi\":\"10.1016/bs.amb.2018.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seamounts are one of the major biomes of the global ocean. The last 25 years of research has seen considerable advances in the understanding of these ecosystems. The interactions between seamounts and steady and variable flows have now been characterised providing a better mechanistic understanding of processes influencing biology. Processes leading to upwelling, including Taylor column formation and tidal rectification, have now been defined as well as those leading to draw down of organic matter from the ocean surface to seamount summit and flanks. There is also an improved understanding of the interactions between seamounts, zooplankton and micronekton communities especially with respect to increased predation pressure in the vicinity of seamounts. Evidence has accumulated of the role of seamounts as hot spots for ocean predators including large pelagic fish, sharks, pinnipeds, cetaceans and seabirds. The complexity of benthic communities associated with seamounts is high and drivers of biodiversity are now being resolved. Claims of high endemism resulting from isolation of seamounts as islands of habitat and speciation have not been supported. However, for species characterised by low dispersal capability, such as some groups of benthic sessile or low-mobility invertebrates, low connectivity between seamount populations has been found with evidence of endemism at a local level. Threats to seamounts have increased in the last 25 years and include overfishing, destructive fishing, marine litter, direct and indirect impacts of climate change and potentially marine mining in the near future. Issues around these threats and their management are discussed.</p>\",\"PeriodicalId\":50950,\"journal\":{\"name\":\"Advances in Marine Biology\",\"volume\":\"79 \",\"pages\":\"137-224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.amb.2018.06.001\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Marine Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.amb.2018.06.001\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Marine Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.amb.2018.06.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 83

摘要

海山是全球海洋的主要生物群落之一。过去25年的研究在理解这些生态系统方面取得了相当大的进展。海底山与稳定和可变流量之间的相互作用现在已经被描述为对影响生物学的过程提供了更好的机制理解。导致上升流的过程,包括泰勒柱形成和潮汐整流,以及那些导致有机物从海洋表面向下拉到海山顶部和侧翼的过程,现在已经得到了定义。人们对海底山、浮游动物和微浮游生物群落之间的相互作用也有了更好的了解,特别是关于海底山附近捕食压力的增加。越来越多的证据表明,海山是大型远洋鱼类、鲨鱼、鳍足类、鲸类和海鸟等海洋捕食者的热点。与海底山相关的底栖生物群落的复杂性很高,生物多样性的驱动因素正在得到解决。关于海山被隔离为栖息地和物种形成岛而造成高地方性的说法没有得到支持。然而,对于一些以低扩散能力为特征的物种,如一些底栖无脊椎动物或低流动性无脊椎动物群体,海底山种群之间的连通性较低,并有证据表明在局部水平上存在地方性。在过去的25年里,海山面临的威胁有所增加,包括过度捕捞、破坏性捕捞、海洋垃圾、气候变化的直接和间接影响,以及不久的将来可能出现的海洋采矿。讨论了围绕这些威胁及其管理的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Biology of Seamounts: 25 Years on.

Seamounts are one of the major biomes of the global ocean. The last 25 years of research has seen considerable advances in the understanding of these ecosystems. The interactions between seamounts and steady and variable flows have now been characterised providing a better mechanistic understanding of processes influencing biology. Processes leading to upwelling, including Taylor column formation and tidal rectification, have now been defined as well as those leading to draw down of organic matter from the ocean surface to seamount summit and flanks. There is also an improved understanding of the interactions between seamounts, zooplankton and micronekton communities especially with respect to increased predation pressure in the vicinity of seamounts. Evidence has accumulated of the role of seamounts as hot spots for ocean predators including large pelagic fish, sharks, pinnipeds, cetaceans and seabirds. The complexity of benthic communities associated with seamounts is high and drivers of biodiversity are now being resolved. Claims of high endemism resulting from isolation of seamounts as islands of habitat and speciation have not been supported. However, for species characterised by low dispersal capability, such as some groups of benthic sessile or low-mobility invertebrates, low connectivity between seamount populations has been found with evidence of endemism at a local level. Threats to seamounts have increased in the last 25 years and include overfishing, destructive fishing, marine litter, direct and indirect impacts of climate change and potentially marine mining in the near future. Issues around these threats and their management are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Marine Biology
Advances in Marine Biology MARINE & FRESHWATER BIOLOGY-
CiteScore
6.10
自引率
0.00%
发文量
6
审稿时长
12 months
期刊介绍: Advances in Marine Biology was first published in 1963 under the founding editorship of Sir Frederick S. Russell, FRS. Now edited by Charles Sheppard, the serial publishes in-depth and up-to-date reviews on a wide range of topics which will appeal to postgraduates and researchers in marine biology, fisheries science, ecology, zoology and biological oceanography. Eclectic volumes in the series are supplemented by thematic volumes on such topics as The Biology of Calanoid Copepods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信