从胶体粒子的布朗动态模拟中学习有效的SDEs

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Nikolaos Evangelou, Felix Dietrich, Juan M. Bello-Rivas, Alex J. Yeh, Rachel S. Hendley, Michael A. Bevan and Ioannis G. Kevrekidis
{"title":"从胶体粒子的布朗动态模拟中学习有效的SDEs","authors":"Nikolaos Evangelou, Felix Dietrich, Juan M. Bello-Rivas, Alex J. Yeh, Rachel S. Hendley, Michael A. Bevan and Ioannis G. Kevrekidis","doi":"10.1039/D2ME00086E","DOIUrl":null,"url":null,"abstract":"<p >We construct a reduced, data-driven, parameter dependent effective stochastic differential equation (eSDE) for electric-field mediated colloidal crystallization using data obtained from Brownian dynamics simulations. We use diffusion maps (a manifold learning algorithm) to identify a set of useful latent observables. In this latent space we identify an eSDE using a deep learning architecture inspired by numerical stochastic integrators and compare it with the traditional Kramers–Moyal expansion estimation. We show that the obtained variables and the learned dynamics accurately encode the physics of the Brownian dynamic simulations. We further illustrate that our reduced model captures the dynamics of corresponding experimental data. Our dimension reduction/reduced model identification approach can be easily ported to a broad class of particle systems dynamics experiments/models.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 7","pages":" 887-901"},"PeriodicalIF":3.2000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning effective SDEs from Brownian dynamic simulations of colloidal particles†\",\"authors\":\"Nikolaos Evangelou, Felix Dietrich, Juan M. Bello-Rivas, Alex J. Yeh, Rachel S. Hendley, Michael A. Bevan and Ioannis G. Kevrekidis\",\"doi\":\"10.1039/D2ME00086E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We construct a reduced, data-driven, parameter dependent effective stochastic differential equation (eSDE) for electric-field mediated colloidal crystallization using data obtained from Brownian dynamics simulations. We use diffusion maps (a manifold learning algorithm) to identify a set of useful latent observables. In this latent space we identify an eSDE using a deep learning architecture inspired by numerical stochastic integrators and compare it with the traditional Kramers–Moyal expansion estimation. We show that the obtained variables and the learned dynamics accurately encode the physics of the Brownian dynamic simulations. We further illustrate that our reduced model captures the dynamics of corresponding experimental data. Our dimension reduction/reduced model identification approach can be easily ported to a broad class of particle systems dynamics experiments/models.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 7\",\"pages\":\" 887-901\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/me/d2me00086e\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d2me00086e","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个简化的,数据驱动的,参数依赖于电场介导的胶体结晶的有效随机微分方程(eSDE),使用从布朗动力学模拟中获得的数据。我们使用扩散映射(一种流形学习算法)来识别一组有用的潜在可观测值。在这个潜在空间中,我们使用受数值随机积分器启发的深度学习架构来识别eSDE,并将其与传统的Kramers-Moyal展开估计进行比较。我们证明了得到的变量和学习到的动力学准确地编码了布朗动力学模拟的物理性质。我们进一步说明,我们的简化模型捕获相应的实验数据的动态。我们的降维/降维模型识别方法可以很容易地移植到广泛的粒子系统动力学实验/模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning effective SDEs from Brownian dynamic simulations of colloidal particles†

Learning effective SDEs from Brownian dynamic simulations of colloidal particles†

We construct a reduced, data-driven, parameter dependent effective stochastic differential equation (eSDE) for electric-field mediated colloidal crystallization using data obtained from Brownian dynamics simulations. We use diffusion maps (a manifold learning algorithm) to identify a set of useful latent observables. In this latent space we identify an eSDE using a deep learning architecture inspired by numerical stochastic integrators and compare it with the traditional Kramers–Moyal expansion estimation. We show that the obtained variables and the learned dynamics accurately encode the physics of the Brownian dynamic simulations. We further illustrate that our reduced model captures the dynamics of corresponding experimental data. Our dimension reduction/reduced model identification approach can be easily ported to a broad class of particle systems dynamics experiments/models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信