{"title":"质谱法用于发现败血症的生物标志物","authors":"Katelyn R. Ludwig and Amanda B. Hummon","doi":"10.1039/C6MB00656F","DOIUrl":null,"url":null,"abstract":"Sepsis is a serious medical condition that occurs in 30% of patients in intensive care units (ICUs). Early detection of sepsis is key to prevent its progression to severe sepsis and septic shock, which can cause organ failure and death. Diagnostic criteria for sepsis are nonspecific and hinder a timely diagnosis in patients. Therefore, there is currently a large effort to detect biomarkers that can aid physicians in the diagnosis and prognosis of sepsis. Mass spectrometry is often the method of choice to detect metabolomic and proteomic changes that occur during sepsis progression. These \"omics\" strategies allow for untargeted profiling of thousands of metabolites and proteins from human biological samples obtained from septic patients. Differential expression of or modifications to these metabolites and proteins can provide a more reliable source of diagnostic biomarkers for sepsis. Here, we focus on the current knowledge of biomarkers of sepsis and discuss the various mass spectrometric technologies used in their detection. We consider studies of the metabolome and proteome and summarize information regarding potential biomarkers in both general and neonatal sepsis.","PeriodicalId":90,"journal":{"name":"Molecular BioSystems","volume":" 4","pages":" 648-664"},"PeriodicalIF":3.7430,"publicationDate":"2017-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C6MB00656F","citationCount":"70","resultStr":"{\"title\":\"Mass spectrometry for the discovery of biomarkers of sepsis\",\"authors\":\"Katelyn R. Ludwig and Amanda B. Hummon\",\"doi\":\"10.1039/C6MB00656F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sepsis is a serious medical condition that occurs in 30% of patients in intensive care units (ICUs). Early detection of sepsis is key to prevent its progression to severe sepsis and septic shock, which can cause organ failure and death. Diagnostic criteria for sepsis are nonspecific and hinder a timely diagnosis in patients. Therefore, there is currently a large effort to detect biomarkers that can aid physicians in the diagnosis and prognosis of sepsis. Mass spectrometry is often the method of choice to detect metabolomic and proteomic changes that occur during sepsis progression. These \\\"omics\\\" strategies allow for untargeted profiling of thousands of metabolites and proteins from human biological samples obtained from septic patients. Differential expression of or modifications to these metabolites and proteins can provide a more reliable source of diagnostic biomarkers for sepsis. Here, we focus on the current knowledge of biomarkers of sepsis and discuss the various mass spectrometric technologies used in their detection. We consider studies of the metabolome and proteome and summarize information regarding potential biomarkers in both general and neonatal sepsis.\",\"PeriodicalId\":90,\"journal\":{\"name\":\"Molecular BioSystems\",\"volume\":\" 4\",\"pages\":\" 648-664\"},\"PeriodicalIF\":3.7430,\"publicationDate\":\"2017-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C6MB00656F\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular BioSystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c6mb00656f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular BioSystems","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2017/mb/c6mb00656f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Mass spectrometry for the discovery of biomarkers of sepsis
Sepsis is a serious medical condition that occurs in 30% of patients in intensive care units (ICUs). Early detection of sepsis is key to prevent its progression to severe sepsis and septic shock, which can cause organ failure and death. Diagnostic criteria for sepsis are nonspecific and hinder a timely diagnosis in patients. Therefore, there is currently a large effort to detect biomarkers that can aid physicians in the diagnosis and prognosis of sepsis. Mass spectrometry is often the method of choice to detect metabolomic and proteomic changes that occur during sepsis progression. These "omics" strategies allow for untargeted profiling of thousands of metabolites and proteins from human biological samples obtained from septic patients. Differential expression of or modifications to these metabolites and proteins can provide a more reliable source of diagnostic biomarkers for sepsis. Here, we focus on the current knowledge of biomarkers of sepsis and discuss the various mass spectrometric technologies used in their detection. We consider studies of the metabolome and proteome and summarize information regarding potential biomarkers in both general and neonatal sepsis.
期刊介绍:
Molecular Omics publishes molecular level experimental and bioinformatics research in the -omics sciences, including genomics, proteomics, transcriptomics and metabolomics. We will also welcome multidisciplinary papers presenting studies combining different types of omics, or the interface of omics and other fields such as systems biology or chemical biology.