Hsin-Hsiung Huang, Shuai Hao, Saul Alarcon, Jie Yang
{"title":"病毒基因组和蛋白家族分类方法的比较。","authors":"Hsin-Hsiung Huang, Shuai Hao, Saul Alarcon, Jie Yang","doi":"10.1515/sagmb-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a statistical classification method based on discriminant analysis using the first and second moments of positions of each nucleotide of the genome sequences as features, and compare its performances with other classification methods as well as natural vector for comparative genomic analysis. We examine the normality of the proposed features. The statistical classification models used including linear discriminant analysis, quadratic discriminant analysis, diagonal linear discriminant analysis, k-nearest-neighbor classifier, logistic regression, support vector machines, and classification trees. All these classifiers are tested on a viral genome dataset and a protein dataset for predicting viral Baltimore labels, viral family labels, and protein family labels.","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0004","citationCount":"4","resultStr":"{\"title\":\"Comparisons of classification methods for viral genomes and protein families using alignment-free vectorization.\",\"authors\":\"Hsin-Hsiung Huang, Shuai Hao, Saul Alarcon, Jie Yang\",\"doi\":\"10.1515/sagmb-2018-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose a statistical classification method based on discriminant analysis using the first and second moments of positions of each nucleotide of the genome sequences as features, and compare its performances with other classification methods as well as natural vector for comparative genomic analysis. We examine the normality of the proposed features. The statistical classification models used including linear discriminant analysis, quadratic discriminant analysis, diagonal linear discriminant analysis, k-nearest-neighbor classifier, logistic regression, support vector machines, and classification trees. All these classifiers are tested on a viral genome dataset and a protein dataset for predicting viral Baltimore labels, viral family labels, and protein family labels.\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2018-0004\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2018-0004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comparisons of classification methods for viral genomes and protein families using alignment-free vectorization.
Abstract In this paper, we propose a statistical classification method based on discriminant analysis using the first and second moments of positions of each nucleotide of the genome sequences as features, and compare its performances with other classification methods as well as natural vector for comparative genomic analysis. We examine the normality of the proposed features. The statistical classification models used including linear discriminant analysis, quadratic discriminant analysis, diagonal linear discriminant analysis, k-nearest-neighbor classifier, logistic regression, support vector machines, and classification trees. All these classifiers are tested on a viral genome dataset and a protein dataset for predicting viral Baltimore labels, viral family labels, and protein family labels.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.