Ya Di, Qingjie Meng, Hongwei Yang, Kun Li, Liyan Cao, Ming Shi, Zhanzhao Fu, Hao Di
{"title":"丹参酮及其纳米颗粒对U14宫颈癌小鼠的抗肿瘤活性。","authors":"Ya Di, Qingjie Meng, Hongwei Yang, Kun Li, Liyan Cao, Ming Shi, Zhanzhao Fu, Hao Di","doi":"10.1177/1849543516673446","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, tanshinone was extracted from <i>Salvia miltiorrhiza</i>. To improve the utilization and the dissolution of the drug, the tanshinone extractions were prepared at a pharmaceutical nanoscale and in the nanometer range of 100-200 nm. Then, the rate of tumor inhibition and the activity of antioxidant system and the thymus/spleen indices were investigated to find the antitumor effect of nanoparticles of tanshinone in cervical carcinoma-bearing mice. Our data suggest that tanshinone inhibits cervical tumor growth and the rates of tumor inhibition of all drug groups were more than 45%. The highest rate was 70.88% in the high dose of nanoscale tanshinone group. The activities of superoxide dismutase were higher in drug groups than in the model control group, and the concentrations of malondialdehyde were significantly lower. These findings suggested that tanshinone enhance the superoxide dismutase activity of the mice and decrease the malondialdehyde content. It may be one of the mechanisms of antitumor effect of tanshinone. The thymus index and spleen index were higher than normal control or model control. These data suggested that tanshinone also enhanced the immune system of mice.</p>","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"3 ","pages":"1849543516673446"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1849543516673446","citationCount":"1","resultStr":"{\"title\":\"Antitumor activity of tanshinone and its nanoparticles on U14 cervical carcinoma-bearing mice.\",\"authors\":\"Ya Di, Qingjie Meng, Hongwei Yang, Kun Li, Liyan Cao, Ming Shi, Zhanzhao Fu, Hao Di\",\"doi\":\"10.1177/1849543516673446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, tanshinone was extracted from <i>Salvia miltiorrhiza</i>. To improve the utilization and the dissolution of the drug, the tanshinone extractions were prepared at a pharmaceutical nanoscale and in the nanometer range of 100-200 nm. Then, the rate of tumor inhibition and the activity of antioxidant system and the thymus/spleen indices were investigated to find the antitumor effect of nanoparticles of tanshinone in cervical carcinoma-bearing mice. Our data suggest that tanshinone inhibits cervical tumor growth and the rates of tumor inhibition of all drug groups were more than 45%. The highest rate was 70.88% in the high dose of nanoscale tanshinone group. The activities of superoxide dismutase were higher in drug groups than in the model control group, and the concentrations of malondialdehyde were significantly lower. These findings suggested that tanshinone enhance the superoxide dismutase activity of the mice and decrease the malondialdehyde content. It may be one of the mechanisms of antitumor effect of tanshinone. The thymus index and spleen index were higher than normal control or model control. These data suggested that tanshinone also enhanced the immune system of mice.</p>\",\"PeriodicalId\":56366,\"journal\":{\"name\":\"Nanobiomedicine\",\"volume\":\"3 \",\"pages\":\"1849543516673446\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1849543516673446\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanobiomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1849543516673446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1849543516673446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Antitumor activity of tanshinone and its nanoparticles on U14 cervical carcinoma-bearing mice.
In this study, tanshinone was extracted from Salvia miltiorrhiza. To improve the utilization and the dissolution of the drug, the tanshinone extractions were prepared at a pharmaceutical nanoscale and in the nanometer range of 100-200 nm. Then, the rate of tumor inhibition and the activity of antioxidant system and the thymus/spleen indices were investigated to find the antitumor effect of nanoparticles of tanshinone in cervical carcinoma-bearing mice. Our data suggest that tanshinone inhibits cervical tumor growth and the rates of tumor inhibition of all drug groups were more than 45%. The highest rate was 70.88% in the high dose of nanoscale tanshinone group. The activities of superoxide dismutase were higher in drug groups than in the model control group, and the concentrations of malondialdehyde were significantly lower. These findings suggested that tanshinone enhance the superoxide dismutase activity of the mice and decrease the malondialdehyde content. It may be one of the mechanisms of antitumor effect of tanshinone. The thymus index and spleen index were higher than normal control or model control. These data suggested that tanshinone also enhanced the immune system of mice.
NanobiomedicineBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍:
Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.