{"title":"全球卫生创新技术模式。","authors":"Kimberly Harding","doi":"10.5772/62921","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC) research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.</p>","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"3 ","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/62921","citationCount":"6","resultStr":"{\"title\":\"Global Health Innovation Technology Models.\",\"authors\":\"Kimberly Harding\",\"doi\":\"10.5772/62921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC) research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.</p>\",\"PeriodicalId\":56366,\"journal\":{\"name\":\"Nanobiomedicine\",\"volume\":\"3 \",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5772/62921\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanobiomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/62921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/62921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC) research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.
NanobiomedicineBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍:
Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.