全球卫生创新技术模式。

Q1 Engineering
Nanobiomedicine Pub Date : 2016-01-01 DOI:10.5772/62921
Kimberly Harding
{"title":"全球卫生创新技术模式。","authors":"Kimberly Harding","doi":"10.5772/62921","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC) research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.</p>","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"3 ","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/62921","citationCount":"6","resultStr":"{\"title\":\"Global Health Innovation Technology Models.\",\"authors\":\"Kimberly Harding\",\"doi\":\"10.5772/62921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC) research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.</p>\",\"PeriodicalId\":56366,\"journal\":{\"name\":\"Nanobiomedicine\",\"volume\":\"3 \",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5772/62921\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanobiomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/62921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/62921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

摘要

高收入、中低收入和低收入(HIC、LMIC、LIC)研究合作者之间长期存在的技术和业务流程差异直接阻碍了传染病和罕见疾病可持续全球卫生创新的增长。我们需要一个开源-开放科学架构框架来弥合这一鸿沟。我们提出这样一个框架,供全球卫生界考虑,该框架采用一种混合方法,将不可知的开源技术与医疗保健互操作性标准和全面质量管理原则集成在一起。我们将通过我们的项目“兰花计划”来验证这个架构框架。兰花项目是一个概念性的临床情报交流和虚拟创新平台,利用这种方法支持多国合作的临床创新工作,可以在当地可持续地为LIC和LMIC研究队列提供支持。目标是使低收入国家和低收入国家的研究组织能够加速其在药物发现、人口健康创新倡议和公共领域知识网络领域的临床试验过程成熟。赞助后,这一概念将由6个国家的12个经确认的临床研究和公共卫生组织进行测试。由于在临床创新过程的所有阶段都有可靠的临床情报和生物监测,该平台的潜在影响是减少药物发现和公共卫生创新滞后时间,并改善临床试验干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global Health Innovation Technology Models.

Global Health Innovation Technology Models.

Global Health Innovation Technology Models.

Global Health Innovation Technology Models.

Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC) research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanobiomedicine
Nanobiomedicine Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍: Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信