多模式动态睡眠检测

Weixuan Chen, Akane Sano, Daniel Lopez Martinez, Sara Taylor, Andrew W McHill, Andrew J K Phillips, Laura Barger, Elizabeth B Klerman, Rosalind W Picard
{"title":"多模式动态睡眠检测","authors":"Weixuan Chen, Akane Sano, Daniel Lopez Martinez, Sara Taylor, Andrew W McHill, Andrew J K Phillips, Laura Barger, Elizabeth B Klerman, Rosalind W Picard","doi":"10.1109/BHI.2017.7897306","DOIUrl":null,"url":null,"abstract":"<p><p>Inadequate sleep affects health in multiple ways. Unobtrusive ambulatory methods to monitor long-term sleep patterns in large populations could be useful for health and policy decisions. This paper presents an algorithm that uses multimodal data from smartphones and wearable technologies to detect sleep/wake state and sleep episode on/offset. We collected 5580 days of multimodal data and applied recurrent neural networks for sleep/wake classification, followed by cross-correlation-based template matching for sleep episode on/offset detection. The method achieved a sleep/wake classification accuracy of 96.5%, and sleep episode on/offset detection F1 scores of 0.85 and 0.82, respectively, with mean errors of 5.3 and 5.5 min, respectively, when compared with sleep/wake state and sleep episode on/offset assessed using actigraphy and sleep diaries.</p>","PeriodicalId":72024,"journal":{"name":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","volume":"2017 ","pages":"465-468"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010306/pdf/nihms975147.pdf","citationCount":"0","resultStr":"{\"title\":\"Multimodal Ambulatory Sleep Detection.\",\"authors\":\"Weixuan Chen, Akane Sano, Daniel Lopez Martinez, Sara Taylor, Andrew W McHill, Andrew J K Phillips, Laura Barger, Elizabeth B Klerman, Rosalind W Picard\",\"doi\":\"10.1109/BHI.2017.7897306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inadequate sleep affects health in multiple ways. Unobtrusive ambulatory methods to monitor long-term sleep patterns in large populations could be useful for health and policy decisions. This paper presents an algorithm that uses multimodal data from smartphones and wearable technologies to detect sleep/wake state and sleep episode on/offset. We collected 5580 days of multimodal data and applied recurrent neural networks for sleep/wake classification, followed by cross-correlation-based template matching for sleep episode on/offset detection. The method achieved a sleep/wake classification accuracy of 96.5%, and sleep episode on/offset detection F1 scores of 0.85 and 0.82, respectively, with mean errors of 5.3 and 5.5 min, respectively, when compared with sleep/wake state and sleep episode on/offset assessed using actigraphy and sleep diaries.</p>\",\"PeriodicalId\":72024,\"journal\":{\"name\":\"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics\",\"volume\":\"2017 \",\"pages\":\"465-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010306/pdf/nihms975147.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI.2017.7897306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2017.7897306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

睡眠不足会在多个方面影响健康。用不显眼的流动方法监测大量人群的长期睡眠模式对健康和政策决策很有帮助。本文介绍了一种利用智能手机和可穿戴技术提供的多模态数据来检测睡眠/觉醒状态和睡眠发作开/关的算法。我们收集了 5580 天的多模态数据,并应用递归神经网络进行睡眠/觉醒分类,然后使用基于交叉相关性的模板匹配进行睡眠发作开/关检测。该方法的睡眠/觉醒分类准确率为96.5%,睡眠发作开始/结束检测F1得分分别为0.85和0.82,与使用动图和睡眠日记评估的睡眠/觉醒状态和睡眠发作开始/结束相比,平均误差分别为5.3和5.5分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multimodal Ambulatory Sleep Detection.

Multimodal Ambulatory Sleep Detection.

Multimodal Ambulatory Sleep Detection.

Multimodal Ambulatory Sleep Detection.

Inadequate sleep affects health in multiple ways. Unobtrusive ambulatory methods to monitor long-term sleep patterns in large populations could be useful for health and policy decisions. This paper presents an algorithm that uses multimodal data from smartphones and wearable technologies to detect sleep/wake state and sleep episode on/offset. We collected 5580 days of multimodal data and applied recurrent neural networks for sleep/wake classification, followed by cross-correlation-based template matching for sleep episode on/offset detection. The method achieved a sleep/wake classification accuracy of 96.5%, and sleep episode on/offset detection F1 scores of 0.85 and 0.82, respectively, with mean errors of 5.3 and 5.5 min, respectively, when compared with sleep/wake state and sleep episode on/offset assessed using actigraphy and sleep diaries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信