寡核苷酸的核磁共振结构测定

Q4 Chemistry
Alexander M. Spring-Connell, Marina Evich, Markus W. Germann
{"title":"寡核苷酸的核磁共振结构测定","authors":"Alexander M. Spring-Connell,&nbsp;Marina Evich,&nbsp;Markus W. Germann","doi":"10.1002/cpnc.48","DOIUrl":null,"url":null,"abstract":"<p>NMR spectroscopy is a versatile tool for determining the structure and dynamics of nucleic acids under solution conditions. In this unit, we provide an overview and detail of the experiments and methods used in our laboratory to determine the structure of oligonucleotides at natural abundance, thus limiting our approach to <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR techniques. Isotopic labeling is heavily used in RNA NMR studies, however, labeling of DNA is still less common and, if modified nucleotides are investigated, is exceptionally expensive or not feasible. Each method described here is extensively documented and annotated with tips and observations to facilitate their application. Sections are devoted to sample preparation, NMR experiments and setup, resonance assignment, structure generation protocols, evaluation, tips that may be useful, and software sources. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10966,"journal":{"name":"Current Protocols in Nucleic Acid Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpnc.48","citationCount":"4","resultStr":"{\"title\":\"NMR Structure Determination for Oligonucleotides\",\"authors\":\"Alexander M. Spring-Connell,&nbsp;Marina Evich,&nbsp;Markus W. Germann\",\"doi\":\"10.1002/cpnc.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>NMR spectroscopy is a versatile tool for determining the structure and dynamics of nucleic acids under solution conditions. In this unit, we provide an overview and detail of the experiments and methods used in our laboratory to determine the structure of oligonucleotides at natural abundance, thus limiting our approach to <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR techniques. Isotopic labeling is heavily used in RNA NMR studies, however, labeling of DNA is still less common and, if modified nucleotides are investigated, is exceptionally expensive or not feasible. Each method described here is extensively documented and annotated with tips and observations to facilitate their application. Sections are devoted to sample preparation, NMR experiments and setup, resonance assignment, structure generation protocols, evaluation, tips that may be useful, and software sources. © 2018 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10966,\"journal\":{\"name\":\"Current Protocols in Nucleic Acid Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpnc.48\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Nucleic Acid Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpnc.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Nucleic Acid Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpnc.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 4

摘要

核磁共振波谱是一种多功能的工具,用于确定核酸在溶液条件下的结构和动力学。在本单元中,我们提供了一个概述和详细的实验和方法,在我们的实验室,以确定在自然丰度寡核苷酸的结构,从而限制了我们的方法1H, 13C和31P核磁共振技术。同位素标记在RNA核磁共振研究中被大量使用,然而,DNA标记仍然不太常见,如果研究修饰的核苷酸,则异常昂贵或不可行。这里描述的每种方法都有广泛的文档和注释,并附有提示和观察,以方便其应用。部分致力于样品制备,核磁共振实验和设置,共振分配,结构生成协议,评估,提示,可能是有用的,和软件来源。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NMR Structure Determination for Oligonucleotides

NMR spectroscopy is a versatile tool for determining the structure and dynamics of nucleic acids under solution conditions. In this unit, we provide an overview and detail of the experiments and methods used in our laboratory to determine the structure of oligonucleotides at natural abundance, thus limiting our approach to 1H, 13C, and 31P NMR techniques. Isotopic labeling is heavily used in RNA NMR studies, however, labeling of DNA is still less common and, if modified nucleotides are investigated, is exceptionally expensive or not feasible. Each method described here is extensively documented and annotated with tips and observations to facilitate their application. Sections are devoted to sample preparation, NMR experiments and setup, resonance assignment, structure generation protocols, evaluation, tips that may be useful, and software sources. © 2018 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Nucleic Acid Chemistry
Current Protocols in Nucleic Acid Chemistry Chemistry-Organic Chemistry
自引率
0.00%
发文量
0
期刊介绍: Published in association with International Society for Nucleosides, Nucleotides & Nucleic Acids (IS3NA) , Current Protocols in Nucleic Acid Chemistry is equally valuable for biotech, pharmaceutical, and academic labs. It is the resource for designing and running successful research projects in the rapidly growing and changing field of nucleic acid, nucleotide, and nucleoside research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信