[前叶草素C、D、E对羧酸酯酶的抑制作用]。

药学学报 Pub Date : 2017-01-01
Zuo Du, Da-wei Chen, Zhi-wei Fu, Zhong-ze Fang, Kun Yang
{"title":"[前叶草素C、D、E对羧酸酯酶的抑制作用]。","authors":"Zuo Du,&nbsp;Da-wei Chen,&nbsp;Zhi-wei Fu,&nbsp;Zhong-ze Fang,&nbsp;Kun Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Praeruptorin C (PC), D (PD) and E (PE) are important compounds extracted from Peucedanum praeruptorum DUNN and have been reported to exert multiple pharmacological activities. The present study is purposed to determine the inhibition of PC, PD and PE on the activity of important phase I metabolic enzymes – carboxylesterases (CES). In vitro human liver microsomes (HLM) incubation system was used to determine the inhibition potential of PC, PD and PE on the activity of CES1 and CES2. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (K(I)) and in vivo exposure level of PD. PD exhibited the strongest inhibition on the activity of CES1, with 81.7% activity inhibited by 100 μmol·L(-1) of PD. PD noncompetitively inhibited the activity of CES1 with the K(I) to be 122.2 μmol·L(-1), indicating inhibition potential of PD towards CES1 in vivo. Therefore, closely monitoring the endogenous metabolic disorders caused by PD and interaction between PD and drugs mainly undergoing CES1-catalyzed metabolism is very necessary.</p>","PeriodicalId":35924,"journal":{"name":"药学学报","volume":"52 1","pages":"66-70"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The inhibition of carboxylesterases by praeruptorin C, D and E].\",\"authors\":\"Zuo Du,&nbsp;Da-wei Chen,&nbsp;Zhi-wei Fu,&nbsp;Zhong-ze Fang,&nbsp;Kun Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Praeruptorin C (PC), D (PD) and E (PE) are important compounds extracted from Peucedanum praeruptorum DUNN and have been reported to exert multiple pharmacological activities. The present study is purposed to determine the inhibition of PC, PD and PE on the activity of important phase I metabolic enzymes – carboxylesterases (CES). In vitro human liver microsomes (HLM) incubation system was used to determine the inhibition potential of PC, PD and PE on the activity of CES1 and CES2. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (K(I)) and in vivo exposure level of PD. PD exhibited the strongest inhibition on the activity of CES1, with 81.7% activity inhibited by 100 μmol·L(-1) of PD. PD noncompetitively inhibited the activity of CES1 with the K(I) to be 122.2 μmol·L(-1), indicating inhibition potential of PD towards CES1 in vivo. Therefore, closely monitoring the endogenous metabolic disorders caused by PD and interaction between PD and drugs mainly undergoing CES1-catalyzed metabolism is very necessary.</p>\",\"PeriodicalId\":35924,\"journal\":{\"name\":\"药学学报\",\"volume\":\"52 1\",\"pages\":\"66-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"药学学报\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"药学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

前胡芦巴苷C (PC)、D (PD)和E (PE)是从前胡芦巴中提取的重要化合物,据报道具有多种药理活性。本研究旨在确定PC, PD和PE对重要的I相代谢酶-羧酸酯酶(CES)活性的抑制作用。采用人肝微粒体(HLM)体外培养系统,测定PC、PD和PE对CES1和CES2活性的抑制潜力。测定其抑制行为,结合体外抑制动力学参数K(I)和体内PD暴露水平进行体外外推。PD对CES1活性的抑制作用最强,100 μmol·L(-1) PD对CES1活性的抑制率为81.7%。PD非竞争性抑制CES1活性,K(I)为122.2 μmol·L(-1),表明PD在体内对CES1具有抑制作用。因此,密切监测PD引起的内源性代谢紊乱以及PD与主要由ces1催化代谢的药物之间的相互作用是非常必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[The inhibition of carboxylesterases by praeruptorin C, D and E].

Praeruptorin C (PC), D (PD) and E (PE) are important compounds extracted from Peucedanum praeruptorum DUNN and have been reported to exert multiple pharmacological activities. The present study is purposed to determine the inhibition of PC, PD and PE on the activity of important phase I metabolic enzymes – carboxylesterases (CES). In vitro human liver microsomes (HLM) incubation system was used to determine the inhibition potential of PC, PD and PE on the activity of CES1 and CES2. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (K(I)) and in vivo exposure level of PD. PD exhibited the strongest inhibition on the activity of CES1, with 81.7% activity inhibited by 100 μmol·L(-1) of PD. PD noncompetitively inhibited the activity of CES1 with the K(I) to be 122.2 μmol·L(-1), indicating inhibition potential of PD towards CES1 in vivo. Therefore, closely monitoring the endogenous metabolic disorders caused by PD and interaction between PD and drugs mainly undergoing CES1-catalyzed metabolism is very necessary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
药学学报
药学学报 Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Acta Pharmaceutica Sinica B (APSB) is a bimonthly English peer-reviewed online journal in ScienceDirect, which publishes significant original research articles, communications and high quality reviews of recent advances. APSB encourages submissions from all areas of pharmaceutical sciences, including pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis and pharmacokinetics. APSB is a part of the series Acta Pharmaceutica Sinica, which was founded in 1953. The journal is co-published by Elsevier B.V., in association with the Institute of MateriaMedica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信