精准医学视角下的分子药物设计

药学学报 Pub Date : 2017-01-01
Zong-ru Guo
{"title":"精准医学视角下的分子药物设计","authors":"Zong-ru Guo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Precision medicine (PM) involves the application of \"omics\" analysis and system biology to analyze the cause of disease at the molecular level for targeted treatments of individual patient. Based on the targeted treatment PM is closely related to pharmaceuticals, which, as a therapeutic means and supply front, mainly embody the two aspects: drug discovery/development, and clinical administration. Innovation of new molecular entities with safety and specific efficacy is the prerequisite and guarantee for the PM practice; on the other hand, the outcome and clues in clinical PM feedback to new drug research. PM and drug research/application are interdependent and promote each other. Aimed at precision medicine, drug discovery and development involve well-known contents: the discovery and validation of targets, the association between target functions and indications (proof of concept), lead discovery and optimization, the association between preclinical investigations and clinical trials, the lean of industrialization and pharmacoeconomics. At the molecular level the therapeutic efficacy originates from the interactive binding between specific atoms or groups of the drug molecule and the complementary atoms or groups of the macromolecular target in three-dimensional space. The strict arrangement of such critical atoms, groups, or fragments reflect specific features for a precise binding to the corresponding target. An alteration of amino acid residues in mutational targets leads to the change in conformation of the target protein, and an accurate structure of drug is necessary for binding to the mutant species and avoiding off-targeting effect. For the tailoring of clinical treatment to the individual patient design and development of various new molecular entities are critical for treatment choice according to the molecular features of biological markers of patients. This article provides some examples and methods of drug design and development in the new period.</p>","PeriodicalId":35924,"journal":{"name":"药学学报","volume":"52 1","pages":"71-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[On the molecular drug design from viewpoint of precision medicine].\",\"authors\":\"Zong-ru Guo\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precision medicine (PM) involves the application of \\\"omics\\\" analysis and system biology to analyze the cause of disease at the molecular level for targeted treatments of individual patient. Based on the targeted treatment PM is closely related to pharmaceuticals, which, as a therapeutic means and supply front, mainly embody the two aspects: drug discovery/development, and clinical administration. Innovation of new molecular entities with safety and specific efficacy is the prerequisite and guarantee for the PM practice; on the other hand, the outcome and clues in clinical PM feedback to new drug research. PM and drug research/application are interdependent and promote each other. Aimed at precision medicine, drug discovery and development involve well-known contents: the discovery and validation of targets, the association between target functions and indications (proof of concept), lead discovery and optimization, the association between preclinical investigations and clinical trials, the lean of industrialization and pharmacoeconomics. At the molecular level the therapeutic efficacy originates from the interactive binding between specific atoms or groups of the drug molecule and the complementary atoms or groups of the macromolecular target in three-dimensional space. The strict arrangement of such critical atoms, groups, or fragments reflect specific features for a precise binding to the corresponding target. An alteration of amino acid residues in mutational targets leads to the change in conformation of the target protein, and an accurate structure of drug is necessary for binding to the mutant species and avoiding off-targeting effect. For the tailoring of clinical treatment to the individual patient design and development of various new molecular entities are critical for treatment choice according to the molecular features of biological markers of patients. This article provides some examples and methods of drug design and development in the new period.</p>\",\"PeriodicalId\":35924,\"journal\":{\"name\":\"药学学报\",\"volume\":\"52 1\",\"pages\":\"71-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"药学学报\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"药学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精准医学(PM)涉及应用“组学”分析和系统生物学在分子水平上分析疾病的原因,以针对个体患者进行针对性治疗。基于靶向治疗的PM与药物密切相关,药物作为治疗手段和供应前沿,主要体现在药物的发现/开发和临床给药两个方面。创新具有安全性和特异性疗效的新型分子实体是PM实践的前提和保证;另一方面,临床PM的结果和线索反馈给新药研究。PM和药物研究/应用是相互依存的,相互促进的。针对精准医疗,药物发现与开发涉及到众所周知的内容:靶点的发现与验证、靶点功能与适应症(概念证明)的关联、先导物的发现与优化、临床前研究与临床试验的关联、产业化的精益化与药物经济学。在分子水平上,治疗效果源于药物分子的特定原子或基团与大分子靶标的互补原子或基团在三维空间中的相互作用结合。这些关键原子、基团或片段的严格排列反映了与相应目标精确结合的特定特征。突变靶点氨基酸残基的改变导致靶蛋白构象的改变,准确的药物结构是与突变物种结合和避免脱靶效应的必要条件。为了使临床治疗适合个体患者,根据患者生物标志物的分子特征设计和开发各种新的分子实体对于治疗选择至关重要。本文介绍了新时期药物设计与开发的一些实例和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[On the molecular drug design from viewpoint of precision medicine].

Precision medicine (PM) involves the application of "omics" analysis and system biology to analyze the cause of disease at the molecular level for targeted treatments of individual patient. Based on the targeted treatment PM is closely related to pharmaceuticals, which, as a therapeutic means and supply front, mainly embody the two aspects: drug discovery/development, and clinical administration. Innovation of new molecular entities with safety and specific efficacy is the prerequisite and guarantee for the PM practice; on the other hand, the outcome and clues in clinical PM feedback to new drug research. PM and drug research/application are interdependent and promote each other. Aimed at precision medicine, drug discovery and development involve well-known contents: the discovery and validation of targets, the association between target functions and indications (proof of concept), lead discovery and optimization, the association between preclinical investigations and clinical trials, the lean of industrialization and pharmacoeconomics. At the molecular level the therapeutic efficacy originates from the interactive binding between specific atoms or groups of the drug molecule and the complementary atoms or groups of the macromolecular target in three-dimensional space. The strict arrangement of such critical atoms, groups, or fragments reflect specific features for a precise binding to the corresponding target. An alteration of amino acid residues in mutational targets leads to the change in conformation of the target protein, and an accurate structure of drug is necessary for binding to the mutant species and avoiding off-targeting effect. For the tailoring of clinical treatment to the individual patient design and development of various new molecular entities are critical for treatment choice according to the molecular features of biological markers of patients. This article provides some examples and methods of drug design and development in the new period.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
药学学报
药学学报 Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Acta Pharmaceutica Sinica B (APSB) is a bimonthly English peer-reviewed online journal in ScienceDirect, which publishes significant original research articles, communications and high quality reviews of recent advances. APSB encourages submissions from all areas of pharmaceutical sciences, including pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis and pharmacokinetics. APSB is a part of the series Acta Pharmaceutica Sinica, which was founded in 1953. The journal is co-published by Elsevier B.V., in association with the Institute of MateriaMedica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信