改进的基于倒立摆模型的步长估计方法。

IF 2.3 4区 计算机科学 Q1 Engineering
Qi Zhao, Boxue Zhang, Jingjing Wang, Wenquan Feng, Wenyan Jia, Mingui Sun
{"title":"改进的基于倒立摆模型的步长估计方法。","authors":"Qi Zhao,&nbsp;Boxue Zhang,&nbsp;Jingjing Wang,&nbsp;Wenquan Feng,&nbsp;Wenyan Jia,&nbsp;Mingui Sun","doi":"10.1177/1550147717702914","DOIUrl":null,"url":null,"abstract":"<p><p>Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.</p>","PeriodicalId":54327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":"13 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1550147717702914","citationCount":"18","resultStr":"{\"title\":\"Improved method of step length estimation based on inverted pendulum model.\",\"authors\":\"Qi Zhao,&nbsp;Boxue Zhang,&nbsp;Jingjing Wang,&nbsp;Wenquan Feng,&nbsp;Wenyan Jia,&nbsp;Mingui Sun\",\"doi\":\"10.1177/1550147717702914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.</p>\",\"PeriodicalId\":54327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1550147717702914\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/1550147717702914\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/1550147717702914","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 18

摘要

步长估计是步态分析、运动训练或行人定位等领域的一个重要问题。在这篇文章中,我们使用一台名为eButton的腰部佩戴的可穿戴计算机来估计步行的步长。该设备中的运动传感器用于记录躯干而非四肢的身体运动。两种信号处理技术被应用于我们的算法设计。方向余弦矩阵将垂直加速度从设备坐标转换为以地形为中心的坐标。经验模态分解用于消除积分过程中产生的零阶和一阶偏斜效应。实验结果表明,该算法在步长估计方面表现良好。随着步行速度的提高,方向余弦矩阵算法的有效性从1.69%提高到3.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved method of step length estimation based on inverted pendulum model.

Improved method of step length estimation based on inverted pendulum model.

Improved method of step length estimation based on inverted pendulum model.

Improved method of step length estimation based on inverted pendulum model.

Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Distributed Sensor Networks
International Journal of Distributed Sensor Networks Computer Science-Computer Networks and Communications
CiteScore
6.00
自引率
4.30%
发文量
94
审稿时长
11 weeks
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信