[基于鞘氨醇-1-磷酸信号通路的药物开发]。

药学学报 Pub Date : 2016-12-01
Jie Bai, Jin-ping Hu
{"title":"[基于鞘氨醇-1-磷酸信号通路的药物开发]。","authors":"Jie Bai,&nbsp;Jin-ping Hu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Sphingosine-1-phosphate (S1P), a bioactive sphingolipid produced by the metabolism of sphingomyelin, regulates cell proliferation, migration, survival and cell-cell contacts. The sphingosine-1- phosphate signaling pathway can regulate the trafficking of lymphocyte, angiogenesis, the progress of cancer and many other cellular functions. The formation of S1P is catalyzed by sphingosine kinases (SPHK), and degraded by lyases(S1PL), therefore S1P level is subject to a dynamic balance in the physiological environment. S1P can act as a second messenger or couple with S1P receptors (S1PR) to exert effects. The targets in the S1P signaling pathway have received considerable attention. Here we review the physiological function and drug development of S1P signaling pathway.</p>","PeriodicalId":35924,"journal":{"name":"药学学报","volume":"51 12","pages":"1822-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The drug development based on sphingosine-1-phosphate signaling pathway].\",\"authors\":\"Jie Bai,&nbsp;Jin-ping Hu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sphingosine-1-phosphate (S1P), a bioactive sphingolipid produced by the metabolism of sphingomyelin, regulates cell proliferation, migration, survival and cell-cell contacts. The sphingosine-1- phosphate signaling pathway can regulate the trafficking of lymphocyte, angiogenesis, the progress of cancer and many other cellular functions. The formation of S1P is catalyzed by sphingosine kinases (SPHK), and degraded by lyases(S1PL), therefore S1P level is subject to a dynamic balance in the physiological environment. S1P can act as a second messenger or couple with S1P receptors (S1PR) to exert effects. The targets in the S1P signaling pathway have received considerable attention. Here we review the physiological function and drug development of S1P signaling pathway.</p>\",\"PeriodicalId\":35924,\"journal\":{\"name\":\"药学学报\",\"volume\":\"51 12\",\"pages\":\"1822-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"药学学报\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"药学学报","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鞘磷脂-1-磷酸(S1P)是鞘磷脂代谢产生的一种生物活性鞘脂,调节细胞增殖、迁移、存活和细胞间接触。鞘氨醇-1-磷酸信号通路可以调节淋巴细胞的运输、血管生成、肿瘤的进展等多种细胞功能。S1P的形成由鞘氨醇激酶(SPHK)催化,并由裂解酶(S1PL)降解,因此S1P水平在生理环境中处于动态平衡状态。S1P可作为第二信使或与S1P受体(S1PR)偶联发挥作用。S1P信号通路中的靶点受到了广泛的关注。本文就S1P信号通路的生理功能及药物研究进展进行综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[The drug development based on sphingosine-1-phosphate signaling pathway].

Sphingosine-1-phosphate (S1P), a bioactive sphingolipid produced by the metabolism of sphingomyelin, regulates cell proliferation, migration, survival and cell-cell contacts. The sphingosine-1- phosphate signaling pathway can regulate the trafficking of lymphocyte, angiogenesis, the progress of cancer and many other cellular functions. The formation of S1P is catalyzed by sphingosine kinases (SPHK), and degraded by lyases(S1PL), therefore S1P level is subject to a dynamic balance in the physiological environment. S1P can act as a second messenger or couple with S1P receptors (S1PR) to exert effects. The targets in the S1P signaling pathway have received considerable attention. Here we review the physiological function and drug development of S1P signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
药学学报
药学学报 Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Acta Pharmaceutica Sinica B (APSB) is a bimonthly English peer-reviewed online journal in ScienceDirect, which publishes significant original research articles, communications and high quality reviews of recent advances. APSB encourages submissions from all areas of pharmaceutical sciences, including pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis and pharmacokinetics. APSB is a part of the series Acta Pharmaceutica Sinica, which was founded in 1953. The journal is co-published by Elsevier B.V., in association with the Institute of MateriaMedica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信