利用激光捕获显微解剖结合LC、MS、A技术报告分析前列腺癌肿瘤微环境蛋白质组

Q4 Biochemistry, Genetics and Molecular Biology
L. Staunton , C. Tonry , R. Lis , S. Finn , J. O⿿Leary , M. Loda , M. Bowden , S.R. Pennington
{"title":"利用激光捕获显微解剖结合LC、MS、A技术报告分析前列腺癌肿瘤微环境蛋白质组","authors":"L. Staunton ,&nbsp;C. Tonry ,&nbsp;R. Lis ,&nbsp;S. Finn ,&nbsp;J. O⿿Leary ,&nbsp;M. Loda ,&nbsp;M. Bowden ,&nbsp;S.R. Pennington","doi":"10.1016/j.euprot.2015.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections. Here, we present an optimized workflow for coupling LCM to LC⿿MS/MS including: sectioning of tissue, a standard LCM workflow, protein digestion and advanced LC⿿MS/MS. Soluble proteins extracted from benign epithelial cells, their associated stroma, tumor epithelial cells and their associated stromal cells from a single patient tissue sample were digested and profiled using advanced LC⿿MS/MS. The correlation between technical replicates was R<sup>2</sup> <!-->=<!--> <!-->0.99 with a mean % CV of 9.55%<!--> <!-->±<!--> <!-->8.73. The correlation between sample replicates was R<sup>2</sup> <!-->=<!--> <!-->0.97 with a mean % CV of 13.83%<!--> <!-->±<!--> <!-->10.17. This represents a robust, systematic approach for profiling of the tumor microenvironment using LCM coupled to label-free LC⿿MS/MS.</p></div>","PeriodicalId":38260,"journal":{"name":"EuPA Open Proteomics","volume":"10 ","pages":"Pages 19-23"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.euprot.2015.11.001","citationCount":"12","resultStr":"{\"title\":\"Profiling the tumor microenvironment proteome in prostate cancer using laser capture microdissection coupled to LC⿿MS⿿A technical report\",\"authors\":\"L. Staunton ,&nbsp;C. Tonry ,&nbsp;R. Lis ,&nbsp;S. Finn ,&nbsp;J. O⿿Leary ,&nbsp;M. Loda ,&nbsp;M. Bowden ,&nbsp;S.R. Pennington\",\"doi\":\"10.1016/j.euprot.2015.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections. Here, we present an optimized workflow for coupling LCM to LC⿿MS/MS including: sectioning of tissue, a standard LCM workflow, protein digestion and advanced LC⿿MS/MS. Soluble proteins extracted from benign epithelial cells, their associated stroma, tumor epithelial cells and their associated stromal cells from a single patient tissue sample were digested and profiled using advanced LC⿿MS/MS. The correlation between technical replicates was R<sup>2</sup> <!-->=<!--> <!-->0.99 with a mean % CV of 9.55%<!--> <!-->±<!--> <!-->8.73. The correlation between sample replicates was R<sup>2</sup> <!-->=<!--> <!-->0.97 with a mean % CV of 13.83%<!--> <!-->±<!--> <!-->10.17. This represents a robust, systematic approach for profiling of the tumor microenvironment using LCM coupled to label-free LC⿿MS/MS.</p></div>\",\"PeriodicalId\":38260,\"journal\":{\"name\":\"EuPA Open Proteomics\",\"volume\":\"10 \",\"pages\":\"Pages 19-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.euprot.2015.11.001\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EuPA Open Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212968515300246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuPA Open Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212968515300246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 12

摘要

激光捕获显微解剖(LCM)允许显微采购特定细胞类型的组织切片。在这里,我们提出了LCM与LC /MS /MS耦合的优化工作流程,包括:组织切片、标准LCM工作流程、蛋白质消化和高级LC /MS /MS。从单个患者组织样本的良性上皮细胞及其相关基质、肿瘤上皮细胞及其相关基质细胞中提取的可溶性蛋白被消化并使用先进的LC /MS /MS进行分析。技术重复间相关系数R2 = 0.99,平均% CV为9.55%±8.73。样品重复间相关系数R2 = 0.97,平均% CV为13.83%±10.17。这代表了使用LCM与无标记LC /MS /MS相结合来分析肿瘤微环境的一种强大、系统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Profiling the tumor microenvironment proteome in prostate cancer using laser capture microdissection coupled to LC⿿MS⿿A technical report

Profiling the tumor microenvironment proteome in prostate cancer using laser capture microdissection coupled to LC⿿MS⿿A technical report

Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections. Here, we present an optimized workflow for coupling LCM to LC⿿MS/MS including: sectioning of tissue, a standard LCM workflow, protein digestion and advanced LC⿿MS/MS. Soluble proteins extracted from benign epithelial cells, their associated stroma, tumor epithelial cells and their associated stromal cells from a single patient tissue sample were digested and profiled using advanced LC⿿MS/MS. The correlation between technical replicates was R2 = 0.99 with a mean % CV of 9.55% ± 8.73. The correlation between sample replicates was R2 = 0.97 with a mean % CV of 13.83% ± 10.17. This represents a robust, systematic approach for profiling of the tumor microenvironment using LCM coupled to label-free LC⿿MS/MS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EuPA Open Proteomics
EuPA Open Proteomics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
审稿时长
103 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信