多位点数据区分了人口增长和多重合并凝聚。

IF 0.8 4区 数学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jere Koskela
{"title":"多位点数据区分了人口增长和多重合并凝聚。","authors":"Jere Koskela","doi":"10.1515/sagmb-2017-0011","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a low dimensional function of the site frequency spectrum that is tailor-made for distinguishing coalescent models with multiple mergers from Kingman coalescent models with population growth, and use this function to construct a hypothesis test between these model classes. The null and alternative sampling distributions of the statistic are intractable, but its low dimensionality renders them amenable to Monte Carlo estimation. We construct kernel density estimates of the sampling distributions based on simulated data, and show that the resulting hypothesis test dramatically improves on the statistical power of a current state-of-the-art method. A key reason for this improvement is the use of multi-locus data, in particular averaging observed site frequency spectra across unlinked loci to reduce sampling variance. We also demonstrate the robustness of our method to nuisance and tuning parameters. Finally we show that the same kernel density estimates can be used to conduct parameter estimation, and argue that our method is readily generalisable for applications in model selection, parameter inference and experimental design.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"17 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2017-0011","citationCount":"17","resultStr":"{\"title\":\"Multi-locus data distinguishes between population growth and multiple merger coalescents.\",\"authors\":\"Jere Koskela\",\"doi\":\"10.1515/sagmb-2017-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a low dimensional function of the site frequency spectrum that is tailor-made for distinguishing coalescent models with multiple mergers from Kingman coalescent models with population growth, and use this function to construct a hypothesis test between these model classes. The null and alternative sampling distributions of the statistic are intractable, but its low dimensionality renders them amenable to Monte Carlo estimation. We construct kernel density estimates of the sampling distributions based on simulated data, and show that the resulting hypothesis test dramatically improves on the statistical power of a current state-of-the-art method. A key reason for this improvement is the use of multi-locus data, in particular averaging observed site frequency spectra across unlinked loci to reduce sampling variance. We also demonstrate the robustness of our method to nuisance and tuning parameters. Finally we show that the same kernel density estimates can be used to conduct parameter estimation, and argue that our method is readily generalisable for applications in model selection, parameter inference and experimental design.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2017-0011\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2017-0011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2017-0011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 17

摘要

我们引入了一个专门用于区分具有多个合并的聚结模型和具有人口增长的Kingman聚结模型的低维站点频谱函数,并使用该函数构建了这些模型类别之间的假设检验。统计量的零抽样和备选抽样分布是难以处理的,但它的低维性使它们适合蒙特卡罗估计。我们基于模拟数据构建抽样分布的核密度估计,并表明由此产生的假设检验显着提高了当前最先进方法的统计能力。这种改进的一个关键原因是使用了多位点数据,特别是在非连锁位点上平均观察到的位点频谱以减少采样方差。我们还证明了我们的方法对干扰和调优参数的鲁棒性。最后,我们证明了同样的核密度估计可以用来进行参数估计,并认为我们的方法很容易推广到模型选择,参数推理和实验设计的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-locus data distinguishes between population growth and multiple merger coalescents.

We introduce a low dimensional function of the site frequency spectrum that is tailor-made for distinguishing coalescent models with multiple mergers from Kingman coalescent models with population growth, and use this function to construct a hypothesis test between these model classes. The null and alternative sampling distributions of the statistic are intractable, but its low dimensionality renders them amenable to Monte Carlo estimation. We construct kernel density estimates of the sampling distributions based on simulated data, and show that the resulting hypothesis test dramatically improves on the statistical power of a current state-of-the-art method. A key reason for this improvement is the use of multi-locus data, in particular averaging observed site frequency spectra across unlinked loci to reduce sampling variance. We also demonstrate the robustness of our method to nuisance and tuning parameters. Finally we show that the same kernel density estimates can be used to conduct parameter estimation, and argue that our method is readily generalisable for applications in model selection, parameter inference and experimental design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
自引率
11.10%
发文量
8
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信