基因表达数据集贝叶斯建模下真相关性与样本相关性的关系。

IF 0.8 4区 数学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Royi Jacobovic
{"title":"基因表达数据集贝叶斯建模下真相关性与样本相关性的关系。","authors":"Royi Jacobovic","doi":"10.1515/sagmb-2017-0068","DOIUrl":null,"url":null,"abstract":"Abstract The prediction of cancer prognosis and metastatic potential immediately after the initial diagnoses is a major challenge in current clinical research. The relevance of such a signature is clear, as it will free many patients from the agony and toxic side-effects associated with the adjuvant chemotherapy automatically and sometimes carelessly subscribed to them. Motivated by this issue, several previous works presented a Bayesian model which led to the following conclusion: thousands of samples are needed to generate a robust gene list for predicting outcome. This conclusion is based on existence of some statistical assumptions including asymptotic independence of sample correlations. The current work makes two main contributions: (1) It shows that while the assumptions of the Bayesian model discussed by previous papers seem to be non-restrictive, they are quite strong. To demonstrate this point, it is shown that some standard sparse and Gaussian models are not included in the set of models which are mathematically consistent with these assumptions. (2) It is shown that the empirical Bayes methodology which was applied in order to test the relevant assumptions does not detect severe violations and consequently an overestimation of the required sample size might be incurred. Finally, we suggest that under some regularity conditions it is possible that the current theoretical results can be used for development of a new method to test the asymptotic independence assumption.","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2017-0068","citationCount":"0","resultStr":"{\"title\":\"On the relation between the true and sample correlations under Bayesian modelling of gene expression datasets.\",\"authors\":\"Royi Jacobovic\",\"doi\":\"10.1515/sagmb-2017-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The prediction of cancer prognosis and metastatic potential immediately after the initial diagnoses is a major challenge in current clinical research. The relevance of such a signature is clear, as it will free many patients from the agony and toxic side-effects associated with the adjuvant chemotherapy automatically and sometimes carelessly subscribed to them. Motivated by this issue, several previous works presented a Bayesian model which led to the following conclusion: thousands of samples are needed to generate a robust gene list for predicting outcome. This conclusion is based on existence of some statistical assumptions including asymptotic independence of sample correlations. The current work makes two main contributions: (1) It shows that while the assumptions of the Bayesian model discussed by previous papers seem to be non-restrictive, they are quite strong. To demonstrate this point, it is shown that some standard sparse and Gaussian models are not included in the set of models which are mathematically consistent with these assumptions. (2) It is shown that the empirical Bayes methodology which was applied in order to test the relevant assumptions does not detect severe violations and consequently an overestimation of the required sample size might be incurred. Finally, we suggest that under some regularity conditions it is possible that the current theoretical results can be used for development of a new method to test the asymptotic independence assumption.\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2017-0068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2017-0068\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2017-0068","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the relation between the true and sample correlations under Bayesian modelling of gene expression datasets.
Abstract The prediction of cancer prognosis and metastatic potential immediately after the initial diagnoses is a major challenge in current clinical research. The relevance of such a signature is clear, as it will free many patients from the agony and toxic side-effects associated with the adjuvant chemotherapy automatically and sometimes carelessly subscribed to them. Motivated by this issue, several previous works presented a Bayesian model which led to the following conclusion: thousands of samples are needed to generate a robust gene list for predicting outcome. This conclusion is based on existence of some statistical assumptions including asymptotic independence of sample correlations. The current work makes two main contributions: (1) It shows that while the assumptions of the Bayesian model discussed by previous papers seem to be non-restrictive, they are quite strong. To demonstrate this point, it is shown that some standard sparse and Gaussian models are not included in the set of models which are mathematically consistent with these assumptions. (2) It is shown that the empirical Bayes methodology which was applied in order to test the relevant assumptions does not detect severe violations and consequently an overestimation of the required sample size might be incurred. Finally, we suggest that under some regularity conditions it is possible that the current theoretical results can be used for development of a new method to test the asymptotic independence assumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
自引率
11.10%
发文量
8
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信