Eszter Laczkó-Zöld, Andrea Komlósi, Timea Ülkei, Erzsébet Fogarasi, Mircea Croitoru, Ibolya Fülöp, Erzsébet Domokos, Ruxandra Ştefănescu, Erzsébet Varga
{"title":"黑加仑、红加仑和醋栗中多酚的提取及其抗氧化活性。","authors":"Eszter Laczkó-Zöld, Andrea Komlósi, Timea Ülkei, Erzsébet Fogarasi, Mircea Croitoru, Ibolya Fülöp, Erzsébet Domokos, Ruxandra Ştefănescu, Erzsébet Varga","doi":"10.1556/018.69.2018.2.5","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we analyzed extracts of Ribes (black currant, red currant and gooseberry) fruits obtained with methanol, methanol 50% and water. For each extract total polyphenol content, total flavonoid content and total anthocyanin content was assessed. The antioxidant activity of extracts was evaluated by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity and by the photo-chemiluminescence (PCL) method. Identification and quantification of individual phenolic compounds was performed by means of high performance liquid chromatograph coupled with diode array detector (HPLC-DAD) analyses. From each fruit, best extraction of polyphenols was obtained with methanol 50%. In case of red currants and gooseberry there was no significant difference in flavonoids and anthocyanins extraction rate by the different extraction solvents. For black currants the methanol and methanol 50% extract presented the highest antioxidant activity. For red currants extracts with methanol 50% showed stronger antioxidant activity (IC<sub>50</sub> = 5.71 mg/ml for DPPH, IC<sub>50</sub> = 1.17 mg/ml for ABTS) than those with methanol or water. In case of gooseberry by the DPPH test the water extract proved to be the most active (IC<sub>50</sub> = 5.9 mg/ml). In the PCL test black currants methanol 50% extract was over 6 times more powerful as the ones from red currants. In case of gooseberries, water extract presented the highest antioxidant activity (41.84 μmol AAE/g). In black currant cyanidin-3-glucoside was the major compound. Quercetin 3-O-glucoside was identified in each sample. From cinnamic acid derivatives neochlorogenic acid was present in black currants in the highest amount (356.33 μg/g).</p>","PeriodicalId":7009,"journal":{"name":"Acta Biologica Hungarica","volume":"69 2","pages":"156-169"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1556/018.69.2018.2.5","citationCount":"28","resultStr":"{\"title\":\"Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity.\",\"authors\":\"Eszter Laczkó-Zöld, Andrea Komlósi, Timea Ülkei, Erzsébet Fogarasi, Mircea Croitoru, Ibolya Fülöp, Erzsébet Domokos, Ruxandra Ştefănescu, Erzsébet Varga\",\"doi\":\"10.1556/018.69.2018.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we analyzed extracts of Ribes (black currant, red currant and gooseberry) fruits obtained with methanol, methanol 50% and water. For each extract total polyphenol content, total flavonoid content and total anthocyanin content was assessed. The antioxidant activity of extracts was evaluated by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity and by the photo-chemiluminescence (PCL) method. Identification and quantification of individual phenolic compounds was performed by means of high performance liquid chromatograph coupled with diode array detector (HPLC-DAD) analyses. From each fruit, best extraction of polyphenols was obtained with methanol 50%. In case of red currants and gooseberry there was no significant difference in flavonoids and anthocyanins extraction rate by the different extraction solvents. For black currants the methanol and methanol 50% extract presented the highest antioxidant activity. For red currants extracts with methanol 50% showed stronger antioxidant activity (IC<sub>50</sub> = 5.71 mg/ml for DPPH, IC<sub>50</sub> = 1.17 mg/ml for ABTS) than those with methanol or water. In case of gooseberry by the DPPH test the water extract proved to be the most active (IC<sub>50</sub> = 5.9 mg/ml). In the PCL test black currants methanol 50% extract was over 6 times more powerful as the ones from red currants. In case of gooseberries, water extract presented the highest antioxidant activity (41.84 μmol AAE/g). In black currant cyanidin-3-glucoside was the major compound. Quercetin 3-O-glucoside was identified in each sample. From cinnamic acid derivatives neochlorogenic acid was present in black currants in the highest amount (356.33 μg/g).</p>\",\"PeriodicalId\":7009,\"journal\":{\"name\":\"Acta Biologica Hungarica\",\"volume\":\"69 2\",\"pages\":\"156-169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1556/018.69.2018.2.5\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biologica Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/018.69.2018.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biologica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/018.69.2018.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity.
In this study, we analyzed extracts of Ribes (black currant, red currant and gooseberry) fruits obtained with methanol, methanol 50% and water. For each extract total polyphenol content, total flavonoid content and total anthocyanin content was assessed. The antioxidant activity of extracts was evaluated by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity and by the photo-chemiluminescence (PCL) method. Identification and quantification of individual phenolic compounds was performed by means of high performance liquid chromatograph coupled with diode array detector (HPLC-DAD) analyses. From each fruit, best extraction of polyphenols was obtained with methanol 50%. In case of red currants and gooseberry there was no significant difference in flavonoids and anthocyanins extraction rate by the different extraction solvents. For black currants the methanol and methanol 50% extract presented the highest antioxidant activity. For red currants extracts with methanol 50% showed stronger antioxidant activity (IC50 = 5.71 mg/ml for DPPH, IC50 = 1.17 mg/ml for ABTS) than those with methanol or water. In case of gooseberry by the DPPH test the water extract proved to be the most active (IC50 = 5.9 mg/ml). In the PCL test black currants methanol 50% extract was over 6 times more powerful as the ones from red currants. In case of gooseberries, water extract presented the highest antioxidant activity (41.84 μmol AAE/g). In black currant cyanidin-3-glucoside was the major compound. Quercetin 3-O-glucoside was identified in each sample. From cinnamic acid derivatives neochlorogenic acid was present in black currants in the highest amount (356.33 μg/g).
期刊介绍:
Acta Biologica Hungarica provides a forum for original research works in the field of experimental biology. It covers cytology, functional morphology, embriology, genetics, endocrinology, cellular physiology, plant physiology, neurobiology, ethology and environmental biology with emphasis on toxicology. Publishes book reviews and advertisements.