{"title":"人类大脑沟模式的功能优化。","authors":"S Heyden, M Ortiz","doi":"10.1093/imammb/dqy007","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a mathematical model of information transmission across the biological neural network of the human brain. The overall function of the brain consists of the emergent processes resulting from the spread of information through the neural network. The capacity of the brain is therefore related to the rate at which it can transmit information through the neural network. The particular transmission model under consideration allows for information to be transmitted along multiple paths between points of the cortex. The resulting transmission rates are governed by potential theory. According to this theory, the brain has preferred and quantized transmission modes that correspond to eigenfunctions of the classical Steklov eigenvalue problem, with the reciprocal eigenvalues quantifying the corresponding transmission rates. We take the model as a basis for testing the hypothesis that the sulcus pattern of the human brain has evolved to maximize the rate of transmission of information between points in the cerebral cortex. We show that the introduction of sulci, or cuts, in an otherwise smooth domain indeed increases the overall transmission rate. We demonstrate this result by means of numerical experiments concerned with a spherical domain with a varying number of slits on its surface.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":"36 2","pages":"207-221"},"PeriodicalIF":0.8000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqy007","citationCount":"4","resultStr":"{\"title\":\"Functional optimality of the sulcus pattern of the human brain.\",\"authors\":\"S Heyden, M Ortiz\",\"doi\":\"10.1093/imammb/dqy007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop a mathematical model of information transmission across the biological neural network of the human brain. The overall function of the brain consists of the emergent processes resulting from the spread of information through the neural network. The capacity of the brain is therefore related to the rate at which it can transmit information through the neural network. The particular transmission model under consideration allows for information to be transmitted along multiple paths between points of the cortex. The resulting transmission rates are governed by potential theory. According to this theory, the brain has preferred and quantized transmission modes that correspond to eigenfunctions of the classical Steklov eigenvalue problem, with the reciprocal eigenvalues quantifying the corresponding transmission rates. We take the model as a basis for testing the hypothesis that the sulcus pattern of the human brain has evolved to maximize the rate of transmission of information between points in the cerebral cortex. We show that the introduction of sulci, or cuts, in an otherwise smooth domain indeed increases the overall transmission rate. We demonstrate this result by means of numerical experiments concerned with a spherical domain with a varying number of slits on its surface.</p>\",\"PeriodicalId\":49863,\"journal\":{\"name\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"volume\":\"36 2\",\"pages\":\"207-221\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imammb/dqy007\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqy007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqy007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
Functional optimality of the sulcus pattern of the human brain.
We develop a mathematical model of information transmission across the biological neural network of the human brain. The overall function of the brain consists of the emergent processes resulting from the spread of information through the neural network. The capacity of the brain is therefore related to the rate at which it can transmit information through the neural network. The particular transmission model under consideration allows for information to be transmitted along multiple paths between points of the cortex. The resulting transmission rates are governed by potential theory. According to this theory, the brain has preferred and quantized transmission modes that correspond to eigenfunctions of the classical Steklov eigenvalue problem, with the reciprocal eigenvalues quantifying the corresponding transmission rates. We take the model as a basis for testing the hypothesis that the sulcus pattern of the human brain has evolved to maximize the rate of transmission of information between points in the cerebral cortex. We show that the introduction of sulci, or cuts, in an otherwise smooth domain indeed increases the overall transmission rate. We demonstrate this result by means of numerical experiments concerned with a spherical domain with a varying number of slits on its surface.
期刊介绍:
Formerly the IMA Journal of Mathematics Applied in Medicine and Biology.
Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged.
The journal welcomes contributions relevant to any area of the life sciences including:
-biomechanics-
biophysics-
cell biology-
developmental biology-
ecology and the environment-
epidemiology-
immunology-
infectious diseases-
neuroscience-
pharmacology-
physiology-
population biology