{"title":"PFAS修复的挑战。","authors":"Ramona Darlington, Edwin Barth, John McKernan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many military bases and their surrounding communities are impacted by contamination with per- and polyfluoroalkyl substances (PFAS) from Aqueous Film-Forming Foams (AFFFs). Soil sorption technologies provide a promising solution to immobilize PFAS in the soil and prevent groundwater and drinking water contamination. This article is the result of a collaborative effort between Battelle and the U.S. EPA's review of the most promising technologies.</p>","PeriodicalId":92458,"journal":{"name":"The Military engineer","volume":"110 712","pages":"58-60"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954436/pdf/nihms945905.pdf","citationCount":"0","resultStr":"{\"title\":\"The Challenges of PFAS Remediation.\",\"authors\":\"Ramona Darlington, Edwin Barth, John McKernan\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many military bases and their surrounding communities are impacted by contamination with per- and polyfluoroalkyl substances (PFAS) from Aqueous Film-Forming Foams (AFFFs). Soil sorption technologies provide a promising solution to immobilize PFAS in the soil and prevent groundwater and drinking water contamination. This article is the result of a collaborative effort between Battelle and the U.S. EPA's review of the most promising technologies.</p>\",\"PeriodicalId\":92458,\"journal\":{\"name\":\"The Military engineer\",\"volume\":\"110 712\",\"pages\":\"58-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954436/pdf/nihms945905.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Military engineer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Military engineer","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many military bases and their surrounding communities are impacted by contamination with per- and polyfluoroalkyl substances (PFAS) from Aqueous Film-Forming Foams (AFFFs). Soil sorption technologies provide a promising solution to immobilize PFAS in the soil and prevent groundwater and drinking water contamination. This article is the result of a collaborative effort between Battelle and the U.S. EPA's review of the most promising technologies.