{"title":"成人神经发生2.0的调控-超越信号通路和转录调节因子。","authors":"Helena Mira, D Chichung Lie","doi":"10.3233/BPL-179001","DOIUrl":null,"url":null,"abstract":"The discovery of adult neurogenesis added a new layer of complexity to our understanding of the mechanisms underlying plasticity in the adult mammalian brain. After more than five decades of research, studies in adult rodents combining genetic and pharmacologic manipulations of neurogenesis with behavioral analyses have now convincingly proven that the life-long generation of new neurons in the dentate gyrus of the hippocampus, in the subventricular zone/olfactory bulb system, and potentially in the hypothalamus, is critical for neural circuit plasticity and for adaptation of the organism to a changing environment. Furthermore, analyses of preclinical models for human diseases not only suggest that perturbation of adult neurogenesis contributes to the pathogenesis of cognitive impairment and emotional symptoms in ageing, neurodegenerative and neurodevelopmental diseases but also raise the possibility that ameliorating neurogenesis deficits may be of considerable therapeutic benefit. Boosted by the proof that substantial generation of neurons occurs in some areas of the postnatal and adult human brain [1–4],","PeriodicalId":72451,"journal":{"name":"Brain plasticity (Amsterdam, Netherlands)","volume":"3 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BPL-179001","citationCount":"3","resultStr":"{\"title\":\"Regulation of Adult Neurogenesis 2.0 - Beyond Signaling Pathways and Transcriptional Regulators.\",\"authors\":\"Helena Mira, D Chichung Lie\",\"doi\":\"10.3233/BPL-179001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of adult neurogenesis added a new layer of complexity to our understanding of the mechanisms underlying plasticity in the adult mammalian brain. After more than five decades of research, studies in adult rodents combining genetic and pharmacologic manipulations of neurogenesis with behavioral analyses have now convincingly proven that the life-long generation of new neurons in the dentate gyrus of the hippocampus, in the subventricular zone/olfactory bulb system, and potentially in the hypothalamus, is critical for neural circuit plasticity and for adaptation of the organism to a changing environment. Furthermore, analyses of preclinical models for human diseases not only suggest that perturbation of adult neurogenesis contributes to the pathogenesis of cognitive impairment and emotional symptoms in ageing, neurodegenerative and neurodevelopmental diseases but also raise the possibility that ameliorating neurogenesis deficits may be of considerable therapeutic benefit. Boosted by the proof that substantial generation of neurons occurs in some areas of the postnatal and adult human brain [1–4],\",\"PeriodicalId\":72451,\"journal\":{\"name\":\"Brain plasticity (Amsterdam, Netherlands)\",\"volume\":\"3 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BPL-179001\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain plasticity (Amsterdam, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BPL-179001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain plasticity (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BPL-179001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regulation of Adult Neurogenesis 2.0 - Beyond Signaling Pathways and Transcriptional Regulators.
The discovery of adult neurogenesis added a new layer of complexity to our understanding of the mechanisms underlying plasticity in the adult mammalian brain. After more than five decades of research, studies in adult rodents combining genetic and pharmacologic manipulations of neurogenesis with behavioral analyses have now convincingly proven that the life-long generation of new neurons in the dentate gyrus of the hippocampus, in the subventricular zone/olfactory bulb system, and potentially in the hypothalamus, is critical for neural circuit plasticity and for adaptation of the organism to a changing environment. Furthermore, analyses of preclinical models for human diseases not only suggest that perturbation of adult neurogenesis contributes to the pathogenesis of cognitive impairment and emotional symptoms in ageing, neurodegenerative and neurodevelopmental diseases but also raise the possibility that ameliorating neurogenesis deficits may be of considerable therapeutic benefit. Boosted by the proof that substantial generation of neurons occurs in some areas of the postnatal and adult human brain [1–4],