{"title":"[两种亚硝酸盐还原酶的分布、结构和序列比对及宏基因组学分析]。","authors":"Yufeng Xin, Tianying Zhao, Xiaohua Qu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To reflect the importance of nitrite reductase (NIR) in the environment, we studied its distribution.</p><p><strong>Methods: </strong>The sequences of NIR were searched in the sequenced genome database at NCBI based on previous reported NIR sequences. The sequence similarity was done by multiple sequence alignment, and phylogenetic relationship was evaluated via constructing the phylogenetic tree. Furthermore, their distribution in the marine metagenome was studied by metagenomics.</p><p><strong>Results: </strong>The homologues of these two enzymes were 397 and 812 strains in sequenced genome, and the proportion was 8 and 15.7 percent, respectively. Almost all of archaea containing type II NIR. They have high identity by multiple sequence alignment analysis. The cofactor, the substrate and the cooper binding sites in type II were high conserved, suggesting that these enzymes had the specific function in denitrification. Phylogenetic analysis showed the two enzymes may have the common ancestor. In marine metagenome analysis, type I and II have 6 and 35 reads per 100000 reads, respectively, the two types of NIRs have the biggest proportion at the tropical south pacific area.</p><p><strong>Conclusion: </strong>Collectively, we suggested NIR, especially type II, play a key role in bioremediation of nitrogen contamination.</p>","PeriodicalId":7120,"journal":{"name":"微生物学报","volume":"57 4","pages":"597-608"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Distribution, structure and sequence alignment, and metagenomics analysis of two nitrite reductases with NO forming].\",\"authors\":\"Yufeng Xin, Tianying Zhao, Xiaohua Qu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To reflect the importance of nitrite reductase (NIR) in the environment, we studied its distribution.</p><p><strong>Methods: </strong>The sequences of NIR were searched in the sequenced genome database at NCBI based on previous reported NIR sequences. The sequence similarity was done by multiple sequence alignment, and phylogenetic relationship was evaluated via constructing the phylogenetic tree. Furthermore, their distribution in the marine metagenome was studied by metagenomics.</p><p><strong>Results: </strong>The homologues of these two enzymes were 397 and 812 strains in sequenced genome, and the proportion was 8 and 15.7 percent, respectively. Almost all of archaea containing type II NIR. They have high identity by multiple sequence alignment analysis. The cofactor, the substrate and the cooper binding sites in type II were high conserved, suggesting that these enzymes had the specific function in denitrification. Phylogenetic analysis showed the two enzymes may have the common ancestor. In marine metagenome analysis, type I and II have 6 and 35 reads per 100000 reads, respectively, the two types of NIRs have the biggest proportion at the tropical south pacific area.</p><p><strong>Conclusion: </strong>Collectively, we suggested NIR, especially type II, play a key role in bioremediation of nitrogen contamination.</p>\",\"PeriodicalId\":7120,\"journal\":{\"name\":\"微生物学报\",\"volume\":\"57 4\",\"pages\":\"597-608\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"微生物学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"微生物学报","FirstCategoryId":"1089","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Distribution, structure and sequence alignment, and metagenomics analysis of two nitrite reductases with NO forming].
Objective: To reflect the importance of nitrite reductase (NIR) in the environment, we studied its distribution.
Methods: The sequences of NIR were searched in the sequenced genome database at NCBI based on previous reported NIR sequences. The sequence similarity was done by multiple sequence alignment, and phylogenetic relationship was evaluated via constructing the phylogenetic tree. Furthermore, their distribution in the marine metagenome was studied by metagenomics.
Results: The homologues of these two enzymes were 397 and 812 strains in sequenced genome, and the proportion was 8 and 15.7 percent, respectively. Almost all of archaea containing type II NIR. They have high identity by multiple sequence alignment analysis. The cofactor, the substrate and the cooper binding sites in type II were high conserved, suggesting that these enzymes had the specific function in denitrification. Phylogenetic analysis showed the two enzymes may have the common ancestor. In marine metagenome analysis, type I and II have 6 and 35 reads per 100000 reads, respectively, the two types of NIRs have the biggest proportion at the tropical south pacific area.
Conclusion: Collectively, we suggested NIR, especially type II, play a key role in bioremediation of nitrogen contamination.
期刊介绍:
Acta Microbiologica Sinica(AMS) is a peer-reviewed monthly (one volume per year)international journal,founded in 1953.It covers a wide range of topics in the areas of general and applied microbiology.The journal
publishes original papers,reviews in microbiological science,and short communications describing unusual observations.
Acta Microbiologica Sinica has been indexed in Index Copernicus (IC),Chemical Abstract (CA),Excerpt Medica Database (EMBASE),AJ of Viniti (Russia),Biological Abstracts (BA),Chinese Science Citation Database
(CSCD),China National Knowledge Infrastructure(CNKI),Institute of Scientific and Technical Information of China(ISTIC),Chinese Journal Citation Report(CJCR),Chinese Biological Abstracts,Chinese Pharmaceutical
Abstracts,Chinese Medical Abstracts and Chinese Science Abstracts.