基于混合建模的斑马鱼脑钙图像时间序列数据的全体积聚类。

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Statistical Analysis and Data Mining Pub Date : 2018-02-01 Epub Date: 2017-12-06 DOI:10.1002/sam.11366
Hien D Nguyen, Jeremy F P Ullmann, Geoffrey J McLachlan, Venkatakaushik Voleti, Wenze Li, Elizabeth M C Hillman, David C Reutens, Andrew L Janke
{"title":"基于混合建模的斑马鱼脑钙图像时间序列数据的全体积聚类。","authors":"Hien D Nguyen,&nbsp;Jeremy F P Ullmann,&nbsp;Geoffrey J McLachlan,&nbsp;Venkatakaushik Voleti,&nbsp;Wenze Li,&nbsp;Elizabeth M C Hillman,&nbsp;David C Reutens,&nbsp;Andrew L Janke","doi":"10.1002/sam.11366","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques are enabling visualization of neurological activity in animal models via luminescent proteins that bind to calcium ions. These techniques generate large volumes of spatially correlated time series. A model-based functional data analysis methodology via Gaussian mixtures is suggested for the clustering of data from such visualizations is proposed. The methodology is theoretically justified and a computationally efficient approach to estimation is suggested. An example analysis of a zebrafish imaging experiment is presented.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"11 1","pages":"5-16"},"PeriodicalIF":2.1000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sam.11366","citationCount":"6","resultStr":"{\"title\":\"Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.\",\"authors\":\"Hien D Nguyen,&nbsp;Jeremy F P Ullmann,&nbsp;Geoffrey J McLachlan,&nbsp;Venkatakaushik Voleti,&nbsp;Wenze Li,&nbsp;Elizabeth M C Hillman,&nbsp;David C Reutens,&nbsp;Andrew L Janke\",\"doi\":\"10.1002/sam.11366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques are enabling visualization of neurological activity in animal models via luminescent proteins that bind to calcium ions. These techniques generate large volumes of spatially correlated time series. A model-based functional data analysis methodology via Gaussian mixtures is suggested for the clustering of data from such visualizations is proposed. The methodology is theoretically justified and a computationally efficient approach to estimation is suggested. An example analysis of a zebrafish imaging experiment is presented.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"11 1\",\"pages\":\"5-16\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/sam.11366\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11366\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11366","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6

摘要

钙是神经信号事件中普遍存在的信使。越来越多的技术通过与钙离子结合的发光蛋白使动物模型的神经活动可视化。这些技术产生大量的空间相关时间序列。提出了一种基于模型的功能数据分析方法,通过高斯混合方法对来自此类可视化的数据进行聚类。该方法在理论上是合理的,并提出了一种计算效率高的估计方法。给出了斑马鱼成像实验的实例分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.

Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.

Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.

Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.

Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques are enabling visualization of neurological activity in animal models via luminescent proteins that bind to calcium ions. These techniques generate large volumes of spatially correlated time series. A model-based functional data analysis methodology via Gaussian mixtures is suggested for the clustering of data from such visualizations is proposed. The methodology is theoretically justified and a computationally efficient approach to estimation is suggested. An example analysis of a zebrafish imaging experiment is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信