一类双退化非线性反应扩散方程的全解。

IF 4.1 3区 数学 Q1 Mathematics
Advances in Difference Equations Pub Date : 2018-01-01 Epub Date: 2018-04-24 DOI:10.1186/s13662-018-1606-y
Rui Yan, Xiaocui Li
{"title":"一类双退化非线性反应扩散方程的全解。","authors":"Rui Yan,&nbsp;Xiaocui Li","doi":"10.1186/s13662-018-1606-y","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with the existence of entire solutions for a reaction-diffusion equation with doubly degenerate nonlinearity. Here the entire solutions are the classical solutions that exist for all [Formula: see text]. With the aid of the comparison theorem and the sup-sub solutions method, we construct some entire solutions that behave as two opposite traveling front solutions with critical speeds moving towards each other from both sides of <i>x</i>-axis and then annihilating. In addition, we apply the existence theorem to a specially doubly degenerate case.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-018-1606-y","citationCount":"4","resultStr":"{\"title\":\"Entire solutions for a reaction-diffusion equation with doubly degenerate nonlinearity.\",\"authors\":\"Rui Yan,&nbsp;Xiaocui Li\",\"doi\":\"10.1186/s13662-018-1606-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper is concerned with the existence of entire solutions for a reaction-diffusion equation with doubly degenerate nonlinearity. Here the entire solutions are the classical solutions that exist for all [Formula: see text]. With the aid of the comparison theorem and the sup-sub solutions method, we construct some entire solutions that behave as two opposite traveling front solutions with critical speeds moving towards each other from both sides of <i>x</i>-axis and then annihilating. In addition, we apply the existence theorem to a specially doubly degenerate case.</p>\",\"PeriodicalId\":53311,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13662-018-1606-y\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-018-1606-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/4/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-018-1606-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

研究一类具有双重退化非线性的反应扩散方程全解的存在性。这里的全部解是存在于所有解的经典解[公式:见文本]。借助于比较定理和上下解法,我们构造了一些完整的解,它们表现为两个具有临界速度的相反的行进前解,从x轴两侧相互移动然后湮灭。此外,我们将存在性定理应用于一种特殊的双简并情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entire solutions for a reaction-diffusion equation with doubly degenerate nonlinearity.

This paper is concerned with the existence of entire solutions for a reaction-diffusion equation with doubly degenerate nonlinearity. Here the entire solutions are the classical solutions that exist for all [Formula: see text]. With the aid of the comparison theorem and the sup-sub solutions method, we construct some entire solutions that behave as two opposite traveling front solutions with critical speeds moving towards each other from both sides of x-axis and then annihilating. In addition, we apply the existence theorem to a specially doubly degenerate case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions. The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信