作用于介质球体的电磁应力张量的散射和梯度力。

The Mathematica journal Pub Date : 2017-01-01 Epub Date: 2017-03-28 DOI:10.3888/tmj.19-1
Zachary H Levine, J J Curry
{"title":"作用于介质球体的电磁应力张量的散射和梯度力。","authors":"Zachary H Levine, J J Curry","doi":"10.3888/tmj.19-1","DOIUrl":null,"url":null,"abstract":"<p><p>The derivation of the scattering force and the gradient force on a spherical particle due to an electromagnetic wave often invokes the Clausius-Mossotti factor, based on an ad hoc physical model. In this article, we derive the expressions including the Clausius-Mossotti factor directly from the fundamental equations of classical electromagnetism. Starting from an analytic expression for the force on a spherical particle in a vacuum using the Maxwell stress tensor, as well as the Mie solution for the response of dielectric particles to an electromagnetic plane wave, we derive the scattering and gradient forces. In both cases, the Clausius-Mossotti factor arises rigorously from the derivation without any physical argumentation. The limits agree with expressions in the literature.</p>","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"19 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915281/pdf/nihms875068.pdf","citationCount":"0","resultStr":"{\"title\":\"Scattering and Gradient Forces from the Electromagnetic Stress Tensor Acting on a Dielectric Sphere.\",\"authors\":\"Zachary H Levine, J J Curry\",\"doi\":\"10.3888/tmj.19-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The derivation of the scattering force and the gradient force on a spherical particle due to an electromagnetic wave often invokes the Clausius-Mossotti factor, based on an ad hoc physical model. In this article, we derive the expressions including the Clausius-Mossotti factor directly from the fundamental equations of classical electromagnetism. Starting from an analytic expression for the force on a spherical particle in a vacuum using the Maxwell stress tensor, as well as the Mie solution for the response of dielectric particles to an electromagnetic plane wave, we derive the scattering and gradient forces. In both cases, the Clausius-Mossotti factor arises rigorously from the derivation without any physical argumentation. The limits agree with expressions in the literature.</p>\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"19 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915281/pdf/nihms875068.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/tmj.19-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/tmj.19-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在推导电磁波对球形粒子产生的散射力和梯度力时,通常会根据临时物理模型引用克劳修斯-莫索蒂系数。在本文中,我们直接从经典电磁学的基本方程推导出包括克劳修斯-莫索蒂因子的表达式。我们从麦克斯韦应力张量对真空中球形粒子受力的解析表达式,以及介质粒子对电磁平面波响应的米氏解法出发,推导出散射力和梯度力。在这两种情况下,克劳修斯-莫索蒂系数都是在推导过程中严格产生的,无需任何物理论证。极限与文献中的表达式一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Scattering and Gradient Forces from the Electromagnetic Stress Tensor Acting on a Dielectric Sphere.

Scattering and Gradient Forces from the Electromagnetic Stress Tensor Acting on a Dielectric Sphere.

The derivation of the scattering force and the gradient force on a spherical particle due to an electromagnetic wave often invokes the Clausius-Mossotti factor, based on an ad hoc physical model. In this article, we derive the expressions including the Clausius-Mossotti factor directly from the fundamental equations of classical electromagnetism. Starting from an analytic expression for the force on a spherical particle in a vacuum using the Maxwell stress tensor, as well as the Mie solution for the response of dielectric particles to an electromagnetic plane wave, we derive the scattering and gradient forces. In both cases, the Clausius-Mossotti factor arises rigorously from the derivation without any physical argumentation. The limits agree with expressions in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信