通过对数R比的局部噪声估计,对基于SNP阵列的CNV调用进行噪声鲁棒性评估。

IF 0.9 4区 数学 Q3 Mathematics
Nele Cosemans, Peter Claes, Nathalie Brison, Joris Robert Vermeesch, Hilde Peeters
{"title":"通过对数R比的局部噪声估计,对基于SNP阵列的CNV调用进行噪声鲁棒性评估。","authors":"Nele Cosemans,&nbsp;Peter Claes,&nbsp;Nathalie Brison,&nbsp;Joris Robert Vermeesch,&nbsp;Hilde Peeters","doi":"10.1515/sagmb-2017-0026","DOIUrl":null,"url":null,"abstract":"<p><p>Arrays based on single nucleotide polymorphisms (SNPs) have been successful for the large scale discovery of copy number variants (CNVs). However, current CNV calling algorithms still have limitations in detecting CNVs with high specificity and sensitivity, especially in case of small (<100 kb) CNVs. Therefore, this study presents a simple statistical analysis to evaluate CNV calls from SNP arrays in order to improve the noise-robustness of existing CNV calling algorithms. The proposed approach estimates local noise of log R ratios and returns the probability that a certain observation is different from this log R ratio noise level. This probability can be triggered at different thresholds to tailor specificity and/or sensitivity in a flexible way. Moreover, a comparison based on qPCR experiments showed that the proposed noise-robust CNV calls outperformed original ones for multiple threshold values.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"17 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2017-0026","citationCount":"0","resultStr":"{\"title\":\"Noise-robust assessment of SNP array based CNV calls through local noise estimation of log R ratios.\",\"authors\":\"Nele Cosemans,&nbsp;Peter Claes,&nbsp;Nathalie Brison,&nbsp;Joris Robert Vermeesch,&nbsp;Hilde Peeters\",\"doi\":\"10.1515/sagmb-2017-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arrays based on single nucleotide polymorphisms (SNPs) have been successful for the large scale discovery of copy number variants (CNVs). However, current CNV calling algorithms still have limitations in detecting CNVs with high specificity and sensitivity, especially in case of small (<100 kb) CNVs. Therefore, this study presents a simple statistical analysis to evaluate CNV calls from SNP arrays in order to improve the noise-robustness of existing CNV calling algorithms. The proposed approach estimates local noise of log R ratios and returns the probability that a certain observation is different from this log R ratio noise level. This probability can be triggered at different thresholds to tailor specificity and/or sensitivity in a flexible way. Moreover, a comparison based on qPCR experiments showed that the proposed noise-robust CNV calls outperformed original ones for multiple threshold values.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2017-0026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2017-0026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2017-0026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

基于单核苷酸多态性(SNPs)的阵列已经成功地用于大规模发现拷贝数变异(CNVs)。然而,目前的CNV调用算法在检测特异性和灵敏度较高的CNV时仍然存在局限性,特别是在小(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise-robust assessment of SNP array based CNV calls through local noise estimation of log R ratios.

Arrays based on single nucleotide polymorphisms (SNPs) have been successful for the large scale discovery of copy number variants (CNVs). However, current CNV calling algorithms still have limitations in detecting CNVs with high specificity and sensitivity, especially in case of small (<100 kb) CNVs. Therefore, this study presents a simple statistical analysis to evaluate CNV calls from SNP arrays in order to improve the noise-robustness of existing CNV calling algorithms. The proposed approach estimates local noise of log R ratios and returns the probability that a certain observation is different from this log R ratio noise level. This probability can be triggered at different thresholds to tailor specificity and/or sensitivity in a flexible way. Moreover, a comparison based on qPCR experiments showed that the proposed noise-robust CNV calls outperformed original ones for multiple threshold values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信