癌症中的反应化学和亲电应激:综述。

Q2 Biochemistry, Genetics and Molecular Biology
High-Throughput Pub Date : 2018-04-27 DOI:10.3390/ht7020012
Vehary Sakanyan
{"title":"癌症中的反应化学和亲电应激:综述。","authors":"Vehary Sakanyan","doi":"10.3390/ht7020012","DOIUrl":null,"url":null,"abstract":"<p><p>Exogenous reactive chemicals can impair cellular homeostasis and are often associated with the development of cancer. Significant progress has been achieved by studying the macromolecular interactions of chemicals that possess various electron-withdrawing groups and the elucidation of the protective responses of cells to chemical interventions. However, the formation of electrophilic species inside the cell and the relationship between oxydative and electrophilic stress remain largely unclear. Derivatives of nitro-benzoxadiazole (also referred as nitro-benzofurazan) are potent producers of hydrogen peroxide and have been used as a model to study the generation of reactive species in cancer cells. This survey highlights the pivotal role of Cu/Zn superoxide dismutase 1 (SOD1) in the production of reactive oxygen and electrophilic species in cells exposed to cell-permeable chemicals. Lipophilic electrophiles rapidly bind to SOD1 and induce stable and functionally active dimers, which produce excess hydrogen peroxide leading to aberrant cell signalling. Moreover, reactive oxygen species and reactive electrophilic species, simultaneously generated by redox reactions, behave as independent entities that attack a variety of proteins. It is postulated that the binding of the electrophilic moiety to multiple proteins leading to impairing different cellular functions may explain unpredictable side effects in patients undergoing chemotherapy with reactive oxygen species (ROS)-inducing drugs. The identification of proteins susceptible to electrophiles at early steps of oxidative and electrophilic stress is a promising way to offer rational strategies for dealing with stress-related malignant tumors.</p>","PeriodicalId":53433,"journal":{"name":"High-Throughput","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/ht7020012","citationCount":"16","resultStr":"{\"title\":\"Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview.\",\"authors\":\"Vehary Sakanyan\",\"doi\":\"10.3390/ht7020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exogenous reactive chemicals can impair cellular homeostasis and are often associated with the development of cancer. Significant progress has been achieved by studying the macromolecular interactions of chemicals that possess various electron-withdrawing groups and the elucidation of the protective responses of cells to chemical interventions. However, the formation of electrophilic species inside the cell and the relationship between oxydative and electrophilic stress remain largely unclear. Derivatives of nitro-benzoxadiazole (also referred as nitro-benzofurazan) are potent producers of hydrogen peroxide and have been used as a model to study the generation of reactive species in cancer cells. This survey highlights the pivotal role of Cu/Zn superoxide dismutase 1 (SOD1) in the production of reactive oxygen and electrophilic species in cells exposed to cell-permeable chemicals. Lipophilic electrophiles rapidly bind to SOD1 and induce stable and functionally active dimers, which produce excess hydrogen peroxide leading to aberrant cell signalling. Moreover, reactive oxygen species and reactive electrophilic species, simultaneously generated by redox reactions, behave as independent entities that attack a variety of proteins. It is postulated that the binding of the electrophilic moiety to multiple proteins leading to impairing different cellular functions may explain unpredictable side effects in patients undergoing chemotherapy with reactive oxygen species (ROS)-inducing drugs. The identification of proteins susceptible to electrophiles at early steps of oxidative and electrophilic stress is a promising way to offer rational strategies for dealing with stress-related malignant tumors.</p>\",\"PeriodicalId\":53433,\"journal\":{\"name\":\"High-Throughput\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/ht7020012\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Throughput\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ht7020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Throughput","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ht7020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 16

摘要

外源性反应性化学物质可以破坏细胞内稳态,并且通常与癌症的发展有关。通过研究具有各种吸电子基团的化学物质的大分子相互作用以及阐明细胞对化学干预的保护反应,已经取得了重大进展。然而,细胞内亲电物质的形成以及氧化应激和亲电应激之间的关系在很大程度上仍不清楚。硝基苯并恶二唑(也称为硝基苯并呋喃唑)的衍生物是过氧化氢的有效生产者,并已被用作研究癌细胞中活性物质产生的模型。这项研究强调了Cu/Zn超氧化物歧化酶1 (SOD1)在暴露于细胞渗透性化学物质的细胞中产生活性氧和亲电物质的关键作用。亲脂性亲电试剂迅速结合SOD1并诱导稳定和功能活跃的二聚体,产生过量的过氧化氢导致异常的细胞信号传导。此外,氧化还原反应同时产生的活性氧和活性亲电物质作为独立的实体攻击多种蛋白质。据推测,亲电部分与多种蛋白质的结合导致不同的细胞功能受损,这可能解释了使用活性氧(ROS)诱导药物化疗的患者不可预测的副作用。在氧化和亲电应激的早期阶段鉴定亲电试剂的易感蛋白是一种有希望的方法,为处理与应激相关的恶性肿瘤提供合理的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview.

Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview.

Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview.

Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview.

Exogenous reactive chemicals can impair cellular homeostasis and are often associated with the development of cancer. Significant progress has been achieved by studying the macromolecular interactions of chemicals that possess various electron-withdrawing groups and the elucidation of the protective responses of cells to chemical interventions. However, the formation of electrophilic species inside the cell and the relationship between oxydative and electrophilic stress remain largely unclear. Derivatives of nitro-benzoxadiazole (also referred as nitro-benzofurazan) are potent producers of hydrogen peroxide and have been used as a model to study the generation of reactive species in cancer cells. This survey highlights the pivotal role of Cu/Zn superoxide dismutase 1 (SOD1) in the production of reactive oxygen and electrophilic species in cells exposed to cell-permeable chemicals. Lipophilic electrophiles rapidly bind to SOD1 and induce stable and functionally active dimers, which produce excess hydrogen peroxide leading to aberrant cell signalling. Moreover, reactive oxygen species and reactive electrophilic species, simultaneously generated by redox reactions, behave as independent entities that attack a variety of proteins. It is postulated that the binding of the electrophilic moiety to multiple proteins leading to impairing different cellular functions may explain unpredictable side effects in patients undergoing chemotherapy with reactive oxygen species (ROS)-inducing drugs. The identification of proteins susceptible to electrophiles at early steps of oxidative and electrophilic stress is a promising way to offer rational strategies for dealing with stress-related malignant tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High-Throughput
High-Throughput Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: -Microarrays -DNA Sequencing -RNA Sequencing -Protein Identification and Quantification -Cell-based Approaches -Omics Technologies -Imaging -Bioinformatics -Computational Biology/Chemistry -Statistics -Integrative Omics -Drug Discovery and Development -Microfluidics -Lab-on-a-chip -Data Mining -Databases -Multiplex Assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信